-
Notifications
You must be signed in to change notification settings - Fork 0
/
create_database.py
133 lines (102 loc) · 3.94 KB
/
create_database.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
from langchain_community.document_loaders import DirectoryLoader, UnstructuredHTMLLoader, PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import Document
from langchain.embeddings import OpenAIEmbeddings
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
import openai
from dotenv import load_dotenv
import os
import shutil
import argparse
from langchain.document_loaders.pdf import PyPDFDirectoryLoader
from get_embedding_function import get_embedding_function
# Load environment variables. Assumes that project contains .env file with API keys
load_dotenv()
#---- Set OpenAI API key
openai.api_key = os.environ['OPENAI_API_KEY']
CHROMA_PATH = "chroma"
DATA_PATH = "data/"
def main():
# Check if the database should be cleared (using the --clear flag).
parser = argparse.ArgumentParser()
parser.add_argument("--reset", action="store_true", help="Reset the database.")
args = parser.parse_args()
if args.reset:
print("✨ Clearing Database")
clear_database()
# Create (or update) the data store.
documents = load_documents()
chunks = split_text(documents)
add_to_chroma(chunks)
def load_documents():
# Load .pdf files
pdf_loader = DirectoryLoader(DATA_PATH, glob="*.pdf", loader_cls=PyPDFLoader)
pdf_documents = pdf_loader.load()
# Load .html files
html_loader = DirectoryLoader(DATA_PATH, glob="*.html", loader_cls=UnstructuredHTMLLoader)
html_documents = html_loader.load()
# Combine the documents
documents = pdf_documents + html_documents
return documents
def split_text(documents: list[Document]):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1200,
chunk_overlap=100,
length_function=len,
add_start_index=True,
)
chunks = text_splitter.split_documents(documents)
print(f"Split {len(documents)} documents into {len(chunks)} chunks.")
document = chunks[10]
print(document.page_content)
print(document.metadata)
return chunks
def add_to_chroma(chunks: list[Document]):
# Load the existing database.
db = Chroma(
persist_directory=CHROMA_PATH, embedding_function=get_embedding_function()
)
# Calculate Page IDs.
chunks_with_ids = calculate_chunk_ids(chunks)
# Add or Update the documents.
existing_items = db.get(include=[]) # IDs are always included by default
existing_ids = set(existing_items["ids"])
print(f"Number of existing documents in DB: {len(existing_ids)}")
# Only add documents that don't exist in the DB.
new_chunks = []
for chunk in chunks_with_ids:
if chunk.metadata["id"] not in existing_ids:
new_chunks.append(chunk)
if len(new_chunks):
print(f"👉 Adding new documents: {len(new_chunks)}")
new_chunk_ids = [chunk.metadata["id"] for chunk in new_chunks]
db.add_documents(new_chunks, ids=new_chunk_ids)
db.persist()
else:
print("✅ No new documents to add")
def calculate_chunk_ids(chunks):
# This will create IDs like "data/O1 Qualification.pdf:6:2"
# Page Source : Page Number : Chunk Index
last_page_id = None
current_chunk_index = 0
for chunk in chunks:
source = chunk.metadata.get("source")
page = chunk.metadata.get("page")
current_page_id = f"{source}:{page}"
# If the page ID is the same as the last one, increment the index.
if current_page_id == last_page_id:
current_chunk_index += 1
else:
current_chunk_index = 0
# Calculate the chunk ID.
chunk_id = f"{current_page_id}:{current_chunk_index}"
last_page_id = current_page_id
# Add it to the page meta-data.
chunk.metadata["id"] = chunk_id
return chunks
def clear_database():
if os.path.exists(CHROMA_PATH):
shutil.rmtree(CHROMA_PATH)
if __name__ == "__main__":
main()