-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgr3.tex
2476 lines (2372 loc) · 81.2 KB
/
gr3.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
% Chapter 1, Section 3 _Linear Algebra_ Jim Hefferon
% http://joshua.smcvt.edu/linearalgebra
% 2001-Jun-09
\section{Reduced Echelon Form}
After developing the mechanics of Gauss's Method,
we observed that it can be done in more than one way.
For example, from this matrix
\begin{equation*}
\begin{mat}[r]
2 &2 \\
4 &3
\end{mat}
\end{equation*}
we could derive any of these three echelon form matrices.
\begin{equation*}
\begin{mat}[r]
2 &2 \\
0 &-1
\end{mat}
\qquad
\begin{mat}[r]
1 &1 \\
0 &-1
\end{mat}
\qquad
\begin{mat}[r]
2 &0 \\
0 &-1
\end{mat}
\end{equation*}
The first results from $-2\rho_1+\rho_2$.
The second comes from doing $(1/2)\rho_1$ and then $-4\rho_1+\rho_2$.
The third comes
from $-2\rho_1+\rho_2$ followed by $2\rho_2+\rho_1$
(after the first row combination the matrix is already in
echelon form so the second one is extra work
but it is nonetheless a legal row operation).
The fact that echelon form
is not unique raises questions.
Will any two echelon form versions of a linear system have the same number of
free variables?
If yes,
will the two have exactly the same free variables?
In this section we will
give a way to decide if one linear system
can be derived from another by row operations.
The answers to both questions, both `yes',
will follow from this.
\subsection{Gauss-Jordan Reduction}%
% Gaussian elimination coupled with back-substitution
% solves linear systems but it is not the only method possible.
Here is an extension of Gauss's Method that has some advantages.
\begin{example} \label{exm:GJRedReadOffSol}
To solve
\begin{equation*}
\begin{linsys}{3}
x &+ &y &- &2z &= &-2 \\
& &y &+ &3z &= &7 \\
x & & &- &z &= &-1
\end{linsys}
\end{equation*}
we can start as usual by reducing it to echelon form.
\begin{equation*}
\grstep{-\rho_1+\rho_3}
\begin{amat}[r]{3}
1 &1 &-2 &-2 \\
0 &1 &3 &7 \\
0 &-1 &1 &1
\end{amat}
\grstep{\rho_2+\rho_3}
\begin{amat}[r]{3}
1 &1 &-2 &-2 \\
0 &1 &3 &7 \\
0 &0 &4 &8
\end{amat}
\end{equation*}
We can keep going to a second stage
by making the leading entries into \( 1 \)'s
\begin{equation*}
\grstep{(1/4)\rho_3}
\begin{amat}[r]{3}
1 &1 &-2 &-2 \\
0 &1 &3 &7 \\
0 &0 &1 &2
\end{amat}
\end{equation*}
and then to a third stage that uses the leading entries
to eliminate all of the other entries in each column
by combining upwards.
\begin{equation*}
\grstep[2\rho_3+\rho_1]{-3\rho_3+\rho_2}
\begin{amat}[r]{3}
1 &1 &0 &2 \\
0 &1 &0 &1 \\
0 &0 &1 &2
\end{amat}
\grstep{-\rho_2+\rho_1}
\begin{amat}[r]{3}
1 &0 &0 &1 \\
0 &1 &0 &1 \\
0 &0 &1 &2
\end{amat}
\end{equation*}
The answer is \( x=1 \), \( y=1 \), and \( z=2 \).
\end{example}
%<*Pivoting>
Using one entry to clear out the rest of a column is
\definend{pivoting}\index{pivoting} on that entry.
%</Pivoting>
Note that the row combination operations in the first stage move left to right,
from column one to column three,
while the combination operations in the third stage move right to left.
\begin{example} \label{exm:GJRedReadOffSolTwo}
The middle stage operations that
turn the leading entries into \( 1 \)'s
don't interact so we can combine multiple ones into a single step.
\begin{align*}
\begin{amat}[r]{2}
2 &1 &7 \\
4 &-2 &6
\end{amat}
&\grstep{-2\rho_1+\rho_2}
\begin{amat}[r]{2}
2 &1 &7 \\
0 &-4 &-8
\end{amat} \\
&\grstep[(-1/4)\rho_2]{(1/2)\rho_1}
\begin{amat}[r]{2}
1 &1/2 &7/2 \\
0 &1 &2
\end{amat} \\
&\grstep{-(1/2)\rho_2+\rho_1}
\begin{amat}[r]{2}
1 &0 &5/2 \\
0 &1 &2
\end{amat}
\end{align*}
The answer is $x=5/2$ and $y=2$.
\end{example}
%<*GaussJordanReduction>
This extension of Gauss's Method is the
\definend{Gauss-Jordan Method}\index{Gauss's Method!Gauss-Jordan Method} or
\definend{Gauss-Jordan reduction}.\index{linear equation!solution of!Gauss-Jordan}\index{Gauss's Method!Gauss-Jordan}
%</GaussJordanReduction>
% It goes past echelon form to a more refined, more specialized,
% matrix form.
\begin{definition}\label{def:RedEchForm}
%<*df:RedEchForm>
A matrix or linear system is in
\definend{reduced echelon form\/}\index{echelon form!reduced}\index{reduced echelon form}
if, in addition to being in echelon form, each leading entry is a~$1$
and is the only nonzero entry in its column.
%</df:RedEchForm>
\end{definition}
\noindent
%<*CostRedEchForm>
The cost of using Gauss-Jordan reduction to solve a system
is the additional arithmetic.
The benefit is that we can just read off the solution set
description.
%</CostRedEchForm>
In any echelon form system, reduced or not, we can read off
when the system has an empty
solution set because there is a contradictory equation.
We can read off
when the system has a one-element solution set because there is no
contradiction and every
variable is the leading variable in some row.
And, we can read off when the system has an infinite solution set because
there is no contradiction and at least one variable is free.
However, in reduced echelon form we can read off not just the size of the
solution set but also its description.
We have no trouble describing the solution set when it is empty, of course.
\nearbyexample{exm:GJRedReadOffSol} and~\ref{exm:GJRedReadOffSolTwo}
show how in a single element solution set case the single element is
in the column of constants.
The next example shows how to read the parametrization
of an infinite solution set.
\begin{example}
\begin{multline*}
\begin{amat}[r]{4}
2 &6 &1 &2 &5 \\
0 &3 &1 &4 &1 \\
0 &3 &1 &2 &5
\end{amat}
\grstep{-\rho_2+\rho_3}
\begin{amat}[r]{4}
2 &6 &1 &2 &5 \\
0 &3 &1 &4 &1 \\
0 &0 &0 &-2 &4
\end{amat} \\
\grstep[(1/3)\rho_2 \\ -(1/2)\rho_3]{(1/2)\rho_1}
\repeatedgrstep[-\rho_3+\rho_1]{-(4/3)\rho_3+\rho_2}
\repeatedgrstep{-3\rho_2+\rho_1}
\begin{amat}[r]{4}
1 &0 &-1/2 &0 &-9/2 \\
0 &1 &1/3 &0 &3 \\
0 &0 &0 &1 &-2
\end{amat}
\end{multline*}
As a linear system this is
\begin{equation*}
\begin{linsys}{4}
x_1 && &-&1/2x_3 && &= &-9/2 \\
&&x_2 &+&1/3x_3 && &= &3 \\
&& && &{}\hspace{.5em}{}&x_4 &= &-2
\end{linsys}
\end{equation*}
so a solution set description is this.
\begin{equation*}
S=\set{\colvec{x_1 \\ x_2 \\ x_3 \\ x_4}
=\colvec[r]{-9/2 \\ 3 \\ 0 \\ -2}
+\colvec[r]{1/2 \\ -1/3 \\ 1 \\ 0}x_3
\suchthat x_3\in\Re}
\end{equation*}
\end{example}
Thus echelon form isn't some kind of one best form for systems.
Other forms, such as reduced echelon form, have advantages and
disadvantages.
Instead of picturing linear systems (and the associated matrices)
as things we operate on,
always directed toward the goal of echelon form, we can think of
them as interrelated when
we can get from one to another by row operations.
The rest of this subsection develops this relationship.
\begin{lemma} \label{le:RowOpsRev}
%<*lm:RowOpsRev>
Elementary row operations are reversible.
%</lm:RowOpsRev>
\end{lemma}
\begin{proof}
%<*pf:RowOpsRev>
For any matrix \( A \),
the effect of swapping rows is reversed by swapping them back,
multiplying a row by a nonzero \( k \) is undone by multiplying by
$1/k$,
and adding a multiple of row \( i \) to row \( j \) (with $i\neq j$)
is undone by subtracting the same multiple of row \( i \) from row \( j \).
\begin{equation*}
A
\grstep{\rho_i\leftrightarrow\rho_j}
\repeatedgrstep{\rho_j\leftrightarrow\rho_i}
A
\qquad
A
\grstep{k\rho_i}
\repeatedgrstep{(1/k)\rho_i}
A
\qquad
A
\grstep{k\rho_i+\rho_j}
\repeatedgrstep{-k\rho_i+\rho_j}
A
\end{equation*}
%</pf:RowOpsRev>
(We need the $i\neq j$ condition;
see \nearbyexercise{exer:INotJMakesRowOpsRev}.)
\end{proof}
Again, the point of view that we are developing, supported now by the lemma,
is that the term `reduces to' is misleading:~where
\( A\longrightarrow B \), we shouldn't think of \( B \) as
after~\( A \) or simpler than~$A$.
Instead we should think of the two matrices as interrelated.
Below is a picture.
It shows the matrices from the start of this section and their
reduced echelon form version in a cluster, as
inter-reducible.
\begin{center}
\includegraphics{ch1.28}
\end{center}
%<*EquivMatrices>
We say
that matrices that reduce to each other are equivalent with respect
to the relationship of row reducibility.
The next result justifies this, using the definition of
an equivalence.\appendrefs{equivalence relations}
%</EquivMatrices>
\begin{lemma} \label{lm:ReducesToIsEqRel}
%<*lm:ReducesToIsEqRel>
Between matrices, `reduces to' is an equivalence re\-la\-tion.
%</lm:ReducesToIsEqRel>
\end{lemma}
\begin{proof}
%<*pf:ReducesToIsEqRel0>
We must check the conditions
(i)~reflexivity, that any matrix reduces to itself,
(ii)~symmetry, that if \( A \) reduces to \( B \) then
\( B \) reduces to \( A \),
and (iii)~transitivity, that if \( A \) reduces to \( B \) and
\( B \) reduces to \( C \) then \( A \) reduces to
\( C \).
%</pf:ReducesToIsEqRel0>
%<*pf:ReducesToIsEqRel1>
Reflexivity is easy; any matrix reduces to itself in zero-many operations.
The relationship is symmetric by the prior lemma\Dash if
\( A \) reduces to \( B \) by some row operations
then also \( B \) reduces to \( A \) by reversing those operations.
%</pf:ReducesToIsEqRel1>
%<*pf:ReducesToIsEqRel2>
For transitivity, suppose that \( A \) reduces to \( B \) and
that \( B \) reduces to \( C \).
Following the reduction steps from $A \rightarrow\cdots\rightarrow B$
with those from $B \rightarrow\cdots\rightarrow C$
gives a reduction from \( A \) to \( C \).
%</pf:ReducesToIsEqRel2>
\end{proof}
\begin{definition} \label{df:RowEquivalence}
%<*df:RowEquivalence>
Two matrices that are interreducible by elementary row operations
are \definend{row equivalent}.\index{matrix!row equivalence}%
\index{row equivalence}\index{equivalence relation!row equivalence}
%</df:RowEquivalence>
\end{definition}
%<*RowEquivalanceClasses>
The diagram below shows the collection of all matrices as a box.
Inside that box each matrix lies in a class.
Matrices are in the same class if and only if they are interreducible.
The classes are disjoint\Dash no matrix is in two distinct classes.
We have partitioned the collection of matrices into
\definend{row equivalence classes}.\appendrefs{partitions and class representatives}\index{partition!row equivalence classes}
%</RowEquivalanceClasses>
\begin{center}
\includegraphics{ch1.27}
\end{center}
\noindent One of the classes is the
cluster of interrelated
matrices from the start of this section pictured earlier,
expanded to include all of the nonsingular $\nbyn{2}$ matrices.
The next subsection proves that the reduced echelon form of a matrix is
unique.
Rephrased in terms of the row-equivalence relationship,
we shall prove that every matrix is
row equivalent to one and only one reduced echelon form matrix.
In terms of the partition what we shall prove is:~every
equivalence class contains one and only one reduced echelon form matrix.
So each reduced echelon form matrix serves as a representative of its
class.
\begin{exercises}
\recommended \item
Use Gauss-Jordan reduction to solve each system.
\begin{exparts*}
\partsitem \(
\begin{linsys}[t]{2}
x &+ &y &= &2 \\
x &- &y &= &0
\end{linsys} \)
\partsitem \(
\begin{linsys}[t]{3}
x & & &- &z &= &4 \\
2x &+ &2y & & &= &1
\end{linsys} \)
\partsitem \(
\begin{linsys}[t]{2}
3x &- &2y &= &1 \\
6x &+ &y &= &1/2
\end{linsys} \)
\partsitem \(
\begin{linsys}[t]{3}
2x &- &y & & &= &-1 \\
x &+ &3y &- &z &= &5 \\
& &y &+ &2z&= &5
\end{linsys} \)
\end{exparts*}
\begin{answer}
These answers show only the Gauss-Jordan reduction.
With it, describing the solution set is easy.
\begin{exparts}
\partsitem The solution set contains only a single element.
\begin{multline*}
\begin{amat}[r]{2}
1 &1 &2 \\
1 &-1 &0
\end{amat}
\grstep{-\rho_1+\rho_2}
\begin{amat}[r]{2}
1 &1 &2 \\
0 &-2 &-2
\end{amat} \\
\grstep{-(1/2)\rho_2}
\begin{amat}[r]{2}
1 &1 &2 \\
0 &1 &1
\end{amat}
\grstep{-\rho_2+\rho_1}
\begin{amat}[r]{2}
1 &0 &1 \\
0 &1 &1
\end{amat}
\end{multline*}
\partsitem The solution set has one parameter.
\begin{equation*}
\begin{amat}[r]{3}
1 &0 &-1 &4 \\
2 &2 &0 &1
\end{amat}
\grstep{-2\rho_1+\rho_2}
\begin{amat}[r]{3}
1 &0 &-1 &4 \\
0 &2 &2 &-7
\end{amat}
\grstep{(1/2)\rho_2}
\begin{amat}[r]{3}
1 &0 &-1 &4 \\
0 &1 &1 &-7/2
\end{amat}
\end{equation*}
\partsitem There is a unique solution.
\begin{multline*}
\begin{amat}[r]{2}
3 &-2 &1 \\
6 &1 &1/2
\end{amat}
\grstep{-2\rho_1+\rho_2}
\begin{amat}[r]{2}
3 &-2 &1 \\
0 &5 &-3/2
\end{amat} \\
\grstep[(1/5)\rho_2]{(1/3)\rho_1}
\begin{amat}[r]{2}
1 &-2/3&1/3 \\
0 &1 &-3/10
\end{amat}
\grstep{(2/3)\rho_2+\rho_1}
\begin{amat}[r]{2}
1 &0 &2/15 \\
0 &1 &-3/10
\end{amat}
\end{multline*}
\partsitem A row swap in the second step makes the arithmetic easier.
\begin{multline*}
\begin{amat}[r]{3}
2 &-1 &0 &-1 \\
1 &3 &-1 &5 \\
0 &1 &2 &5
\end{amat}
\grstep{-(1/2)\rho_1+\rho_2}
\begin{amat}[r]{3}
2 &-1 &0 &-1 \\
0 &7/2 &-1 &11/2 \\
0 &1 &2 &5
\end{amat} \\
\begin{aligned}
&\grstep{\rho_2\leftrightarrow\rho_3}
\begin{amat}[r]{3}
2 &-1 &0 &-1 \\
0 &1 &2 &5 \\
0 &7/2 &-1 &11/2
\end{amat}
\grstep{-(7/2)\rho_2+\rho_3}
\begin{amat}[r]{3}
2 &-1 &0 &-1 \\
0 &1 &2 &5 \\
0 &0 &-8 &-12
\end{amat} \\
&\grstep[-(1/8)\rho_2]{(1/2)\rho_1}
\begin{amat}[r]{3}
1 &-1/2&0 &-1/2 \\
0 &1 &2 &5 \\
0 &0 &1 &3/2
\end{amat}
\grstep{-2\rho_3+\rho_2}
\begin{amat}[r]{3}
1 &-1/2&0 &-1/2 \\
0 &1 &0 &2 \\
0 &0 &1 &3/2
\end{amat} \\
&\grstep{(1/2)\rho_2+\rho_1}
\begin{amat}[r]{3}
1 &0 &0 &1/2 \\
0 &1 &0 &2 \\
0 &0 &1 &3/2
\end{amat}
\end{aligned}
\end{multline*}
\end{exparts}
\end{answer}
\item Do Gauss-Jordan reduction.
\begin{exparts*}
\partsitem
$\begin{linsys}[t]{3}
x &+ &y &- &z &= &3 \\
2x &- &y &- &z &= &1 \\
3x &+ &y &+ &2z &= &0
\end{linsys}$
\partsitem
$\begin{linsys}[t]{3}
x &+ &y &+ &2z &= &0 \\
2x &- &y &+ &z &= &1 \\
4x &+ &y &+ &5z &= &1
\end{linsys}$
\end{exparts*}
\begin{answer}
\begin{exparts}
\partsitem
\begin{multline*}
\begin{amat}{3}
1 &1 &-1 &3 \\
2 &-1 &-1 &1 \\
3 &1 &2 &0
\end{amat}
\grstep[-3\rho_1+\rho_3]{-2\rho_1+\rho_2}
\begin{amat}{3}
1 &1 &-1 &3 \\
0 &-3 &-1 &1 \\
0 &-2 &5 &-9
\end{amat} \\
\begin{aligned}
&\grstep{-(2/3)\rho_2+\rho_3}
\begin{amat}{3}
1 &1 &-1 &3 \\
0 &-3 &-1 &1 \\
0 &0 &13/3 &-17/3
\end{amat}
\grstep[(3/13)\rho_3]{-(1/3)\rho_2}
\begin{amat}{3}
1 &1 &-1 &3 \\
0 &1 &-1/3 &5/3 \\
0 &0 &1 &-17/13
\end{amat} \\
&\grstep[(1/3)\rho_3+\rho_2]{\rho_3+\rho_1}
\begin{amat}{3}
1 &1 &0 &22/13 \\
0 &1 &0 &16/13 \\
0 &0 &1 &-17/13
\end{amat}
\grstep{-\rho_2+\rho_1}
\begin{amat}{3}
1 &0 &0 &6/13 \\
0 &1 &0 &16/13 \\
0 &0 &1 &-17/13
\end{amat}
\end{aligned}
\end{multline*}
\partsitem
\begin{multline*}
\begin{amat}{3}
1 &1 &2 &0 \\
2 &-1 &1 &1 \\
4 &1 &5 &1
\end{amat}
\grstep[-4\rho_1+\rho_3]{-2\rho_1+\rho_2}
\begin{amat}{3}
1 &1 &2 &0 \\
0 &-3 &-3 &1 \\
0 &-3 &-3 &1
\end{amat}
\grstep{-\rho_2+\rho_3}
\begin{amat}{3}
1 &1 &2 &0 \\
0 &-3 &-3 &1 \\
0 &0 &0 &0
\end{amat} \\
\grstep{-(1/3)\rho_2}
\begin{amat}{3}
1 &1 &2 &0 \\
0 &1 &1 &-1/3 \\
0 &0 &0 &0
\end{amat}
\grstep{-\rho_2+\rho_1}
\begin{amat}{3}
1 &0 &1 &1/3 \\
0 &1 &1 &-1/3 \\
0 &0 &0 &0
\end{amat}
\end{multline*}
\end{exparts}
\end{answer}
\recommended \item
Find the reduced echelon form of each matrix.
\begin{exparts*}
\partsitem \( \begin{mat}[r]
2 &1 \\
1 &3
\end{mat} \)
\partsitem \( \begin{mat}[r]
1 &3 &1 \\
2 &0 &4 \\
-1 &-3 &-3
\end{mat} \)
\partsitem \( \begin{mat}[r]
1 &0 &3 &1 &2 \\
1 &4 &2 &1 &5 \\
3 &4 &8 &1 &2
\end{mat} \)
\partsitem \( \begin{mat}[r]
0 &1 &3 &2 \\
0 &0 &5 &6 \\
1 &5 &1 &5
\end{mat} \)
\end{exparts*}
\begin{answer}
Use Gauss-Jordan reduction.
\begin{exparts}
\partsitem The reduced echelon form is all zeroes except
for a diagonal of ones.
\begin{equation*}
\grstep{-(1/2)\rho_1+\rho_2}
\begin{mat}[r]
2 &1 \\
0 &5/2
\end{mat}
\grstep[(2/5)\rho_2]{(1/2)\rho_1}
\begin{mat}[r]
1 &1/2\\
0 &1
\end{mat}
\grstep{-(1/2)\rho_2+\rho_1}
\begin{mat}[r]
1 &0 \\
0 &1
\end{mat}
\end{equation*}
\partsitem As in the prior problem, the reduced echelon form is
all zeroes but for a diagonal of ones.
\begin{multline*}
\grstep[\rho_1+\rho_3]{-2\rho_1+\rho_2}
\begin{mat}[r]
1 &3 &1 \\
0 &-6 &2 \\
0 &0 &-2
\end{mat}
\grstep[-(1/2)\rho_3]{-(1/6)\rho_2}
\begin{mat}[r]
1 &3 &1 \\
0 &1 &-1/3 \\
0 &0 &1
\end{mat} \\
\grstep[-\rho_3+\rho_1]{(1/3)\rho_3+\rho_2}
\begin{mat}[r]
1 &3 &0 \\
0 &1 &0 \\
0 &0 &1
\end{mat}
\grstep{-3\rho_2+\rho_1}
\begin{mat}[r]
1 &0 &0 \\
0 &1 &0 \\
0 &0 &1
\end{mat}
\end{multline*}
\partsitem There are more columns than rows so we must get more
than just a diagonal of ones.
\begin{multline*}
\grstep[-3\rho_1+\rho_3]{-\rho_1+\rho_2}
\begin{mat}[r]
1 &0 &3 &1 &2 \\
0 &4 &-1 &0 &3 \\
0 &4 &-1 &-2 &-4
\end{mat}
\grstep{-\rho_2+\rho_3}
\begin{mat}[r]
1 &0 &3 &1 &2 \\
0 &4 &-1 &0 &3 \\
0 &0 &0 &-2 &-7
\end{mat} \\
\grstep[-(1/2)\rho_3]{(1/4)\rho_2}
\begin{mat}[r]
1 &0 &3 &1 &2 \\
0 &1 &-1/4 &0 &3/4 \\
0 &0 &0 &1 &7/2
\end{mat}
\grstep{-\rho_3+\rho_1}
\begin{mat}[r]
1 &0 &3 &0 &-3/2 \\
0 &1 &-1/4 &0 &3/4 \\
0 &0 &0 &1 &7/2
\end{mat}
\end{multline*}
\partsitem As in the prior item, this is not a square matrix.
\begin{multline*}
\grstep{\rho_1\leftrightarrow\rho_3}
\begin{mat}[r]
1 &5 &1 &5 \\
0 &0 &5 &6 \\
0 &1 &3 &2
\end{mat}
\grstep{\rho_2\leftrightarrow\rho_3}
\begin{mat}[r]
1 &5 &1 &5 \\
0 &1 &3 &2 \\
0 &0 &5 &6
\end{mat} \\
\begin{aligned}
&\grstep{(1/5)\rho_3}
\begin{mat}[r]
1 &5 &1 &5 \\
0 &1 &3 &2 \\
0 &0 &1 &6/5
\end{mat}
\grstep[-\rho_3+\rho_1]{-3\rho_3+\rho_2}
\begin{mat}[r]
1 &5 &0 &19/5 \\
0 &1 &0 &-8/5 \\
0 &0 &1 &6/5
\end{mat} \\
&\grstep{-5\rho_2+\rho_1}
\begin{mat}[r]
1 &0 &0 &59/5 \\
0 &1 &0 &-8/5 \\
0 &0 &1 &6/5
\end{mat}
\end{aligned}
\end{multline*}
\end{exparts}
\end{answer}
\item Get the reduced echelon form of each.
\begin{exparts*}
\partsitem $
\begin{mat}
0 &2 &1 \\
2 &-1 &1 \\
-2 &-1 &0
\end{mat}$
\partsitem $
\begin{mat}
1 &3 &1 \\
2 &6 &2 \\
-1 &0 &0
\end{mat}$
\end{exparts*}
\begin{answer}
\begin{exparts}
\partsitem Swap first.
\begin{equation*}
\grstep{\rho_1\leftrightarrow\rho_2}
\grstep{\rho_1+\rho_3}
\grstep{\rho_2+\rho_3}
\grstep[(1/2)\rho_2 \\ (1/2)\rho_3]{(1/2)\rho_1}
\grstep[(-1/2)\rho_3+\rho_2]{(-1/2)\rho_3+\rho_1}
\grstep{(1/2)\rho_2+\rho_1}
\begin{mat}
1 &0 &0 \\
0 &1 &0 \\
0 &0 &1
\end{mat}
\end{equation*}
\partsitem Here the swap is in the middle.
\begin{equation*}
\grstep[\rho_1+\rho_3]{-2\rho_1+\rho_2}
\grstep{\rho_2\leftrightarrow\rho_3}
\grstep{(1/3)\rho_2}
\grstep{-3\rho_2+\rho_1}
\begin{mat}
1 &0 &0 \\
0 &1 &1/3 \\
0 &0 &0
\end{mat}
\end{equation*}
\end{exparts}
\end{answer}
\recommended \item
Find each solution set by using Gauss-Jordan reduction and
then reading off the parametrization.
\begin{exparts}
\partsitem \( \begin{linsys}[t]{3}
2x &+ &y &- &z &= &1 \\
4x &- &y & & &= &3
\end{linsys} \)
\partsitem \( \begin{linsys}[t]{4}
x & & &- &z & & &= &1 \\
& &y &+ &2z &- &w &= &3 \\
x &+ &2y &+ &3z &- &w &= &7
\end{linsys} \)
\partsitem \( \begin{linsys}[t]{4}
x &- &y &+ &z & & &= &0 \\
& &y & & &+ &w &= &0 \\
3x &- &2y &+ &3z &+ &w &= &0 \\
& &-y & & &- &w &= &0
\end{linsys} \)
\partsitem \( \begin{linsys}[t]{5}
a &+ &2b &+ &3c &+ &d &- &e &= &1 \\
3a &- &b &+ &c &+ &d &+ &e &= &3
\end{linsys} \)
\end{exparts}
\begin{answer}
For the Gauss's halves, see the answers to Chapter One's
section~I.2 question
\nearbyexercise{exer:SlvMatNot}.
\begin{exparts}
\partsitem The ``Jordan'' half goes this way.
\begin{equation*}
\grstep[-(1/3)\rho_2]{(1/2)\rho_1}
\begin{amat}[r]{3}
1 &1/2 &-1/2 &1/2 \\
0 &1 &-2/3 &-1/3
\end{amat}
\grstep{-(1/2)\rho_2+\rho_1}
\begin{amat}[r]{3}
1 &0 &-1/6 &2/3 \\
0 &1 &-2/3 &-1/3
\end{amat}
\end{equation*}
The solution set is this
\begin{equation*}
\set{\colvec[r]{2/3 \\ -1/3 \\ 0}
+\colvec[r]{1/6 \\ 2/3 \\ 1}z
\suchthat z\in\Re}
\end{equation*}
\partsitem The second half is
\begin{equation*}
\grstep{\rho_3+\rho_2}
\begin{amat}[r]{4}
1 &0 &-1 &0 &1 \\
0 &1 &2 &0 &3 \\
0 &0 &0 &1 &0
\end{amat}
\end{equation*}
so the solution is this.
\begin{equation*}
\set{\colvec[r]{1 \\ 3 \\ 0 \\ 0}
+\colvec[r]{1 \\ -2 \\ 1 \\ 0}z
\suchthat z\in\Re}
\end{equation*}
\partsitem This Jordan half
\begin{equation*}
\grstep{\rho_2+\rho_1}
\begin{amat}[r]{4}
1 &0 &1 &1 &0 \\
0 &1 &0 &1 &0 \\
0 &0 &0 &0 &0 \\
0 &0 &0 &0 &0
\end{amat}
\end{equation*}
gives
\begin{equation*}
\set{\colvec[r]{0 \\ 0 \\ 0 \\ 0}
+\colvec[r]{-1 \\ 0 \\ 1 \\ 0}z
+\colvec[r]{-1 \\ -1 \\ 0 \\ 1}w
\suchthat z,w\in\Re}
\end{equation*}
(of course, we could omit the zero vector from the description).
\partsitem The ``Jordan'' half
\begin{align*}
&\grstep{-(1/7)\rho_2}
\begin{amat}[r]{5}
1 &2 &3 &1 &-1 &1 \\
0 &1 &8/7 &2/7 &-4/7 &0
\end{amat} \\
&\grstep{-2\rho_2+\rho_1}
\begin{amat}[r]{5}
1 &0 &5/7 &3/7 &1/7 &1 \\
0 &1 &8/7 &2/7 &-4/7 &0
\end{amat}
\end{align*}
ends with this solution set.
\begin{equation*}
\set{\colvec[r]{1 \\ 0 \\ 0 \\ 0 \\ 0}
+\colvec[r]{-5/7 \\ -8/7 \\ 1 \\ 0 \\ 0}c
+\colvec[r]{-3/7 \\ -2/7 \\ 0 \\ 1 \\ 0}d
+\colvec[r]{-1/7 \\ 4/7 \\ 0 \\ 0 \\ 1}e
\suchthat c,d,e\in\Re}
\end{equation*}
\end{exparts}
\end{answer}
\item
Give two distinct echelon form versions of this matrix.
\begin{equation*}
\begin{mat}[r]
2 &1 &1 &3 \\
6 &4 &1 &2 \\
1 &5 &1 &5
\end{mat}
\end{equation*}
\begin{answer}
Routine Gauss's Method gives one:
\begin{equation*}
\grstep[-(1/2)\rho_1+\rho_3]{-3\rho_1+\rho_2}
\begin{mat}[r]
2 &1 &1 &3 \\
0 &1 &-2 &-7 \\
0 &9/2&1/2&7/2
\end{mat}
\grstep{-(9/2)\rho_2+\rho_3}
\begin{mat}[r]
2 &1 &1 &3 \\
0 &1 &-2 &-7 \\
0 &0 &19/2 &35
\end{mat}
\end{equation*}
and any cosmetic change, such as multiplying the bottom row by \( 2 \),
\begin{equation*}
\begin{mat}[r]
2 &1 &1 &3 \\
0 &1 &-2 &-7 \\
0 &0 &19 &70
\end{mat}
\end{equation*}
gives another.
\end{answer}
\recommended \item \label{exer:PossRedEchFrms}
List the reduced echelon forms possible for each size.
\begin{exparts*}
\partsitem \( \nbyn{2} \)
\partsitem \( \nbym{2}{3} \)
\partsitem \( \nbym{3}{2} \)
\partsitem \( \nbyn{3} \)
\end{exparts*}
\begin{answer}
In the cases listed below, we take $a,b\in\Re$.
Thus, some canonical forms
listed below actually include infinitely many cases.
In particular, they includes the cases $a=0$ and $b=0$.
\begin{exparts}
\partsitem
$\begin{mat}[r]
0 &0 \\
0 &0
\end{mat}$,
$\begin{mat}[r]
1 &a \\
0 &0
\end{mat}$,
$\begin{mat}[r]
0 &1 \\
0 &0
\end{mat}$,
$\begin{mat}[r]
1 &0 \\
0 &1
\end{mat}$
\partsitem
$\begin{mat}[r]
0 &0 &0 \\
0 &0 &0
\end{mat}$,
$\begin{mat}[r]
1 &a &b \\
0 &0 &0
\end{mat}$,
$\begin{mat}[r]
0 &1 &a \\
0 &0 &0
\end{mat}$,
$\begin{mat}[r]
0 &0 &1 \\
0 &0 &0
\end{mat}$,
$\begin{mat}[r]
1 &0 &a \\
0 &1 &b
\end{mat}$,
$\begin{mat}[r]
1 &a &0 \\
0 &0 &1
\end{mat}$,
$\begin{mat}[r]
0 &1 &0 \\
0 &0 &1
\end{mat}$
\partsitem
$\begin{mat}[r]
0 &0 \\
0 &0 \\
0 &0
\end{mat}$,
$\begin{mat}[r]
1 &a \\
0 &0 \\
0 &0
\end{mat}$,
$\begin{mat}[r]
0 &1 \\
0 &0 \\
0 &0
\end{mat}$,
$\begin{mat}[r]
1 &0 \\
0 &1 \\