-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProblem027.js
49 lines (39 loc) · 1.36 KB
/
Problem027.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
/*
Euler discovered the remarkable quadratic formula:
n2+n+41
It turns out that the formula will produce 40 primes for the consecutive integer values 0≤n≤39. However, when n=40,402+40+41=40(40+1)+41 is divisible by 41, and certainly when n=41,412+41+41 is clearly divisible by 41.
The incredible formula n2−79n+1601 was discovered, which produces 80 primes for the consecutive values 0≤n≤79. The product of the coefficients, −79 and 1601, is −126479.
Considering quadratics of the form:
n2+an+b, where |a|<1000 and |b|≤1000
where |n| is the modulus/absolute value of n
e.g. |11|=11 and |−4|=4
Find the product of the coefficients, a and b, for the quadratic expression that produces the maximum number of primes for consecutive values of n, starting with n=0.
*/
function isPrime(number) {
if (number<2) return false;
for (var i=2; i<=Math.sqrt(number); i++) {
if (number%i==0) return false;
}
return true;
}
function quadraticFormula(a, b, n) {
return (n*n)+(a*n)+b;
}
var a;
var b;
var longestConsecutivePrimes = 0;
var product = 0;
for (a=-999; a<1000; a++) {
if (a==0) continue;
for (b=2; b<1000; b++) {
number = b;
var i;
for (i=1; isPrime(number); i++) number = quadraticFormula(a, b, i);
if (i>longestConsecutivePrimes) {
longestConsecutivePrimes = i;
product = a*b;
}
}
}
console.log(product);
// -59231