-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata.py
295 lines (267 loc) · 12.6 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import numpy as np
from sklearn.model_selection import train_test_split
from utils import *
class HAM10000:
def __init__(
self,
data_path = "../datasets/VAD_Datasets/HAM10000_SPLIT/",
batch_size = 64,
val_split = 0.1,
image_size = 128,
isTrain = True,
NORMAL_LABEL = 0,
useAllTestData = False,
size = 100,
random_state = 42,
deriving = False
):
self.__name__ = "HAM10000"
self.data_path = data_path
self.batch_size = batch_size
self.val_split = val_split
self.image_size = image_size if isinstance(image_size, tuple) else (image_size, image_size)
self.isTrain = isTrain
self.NORMAL_LABEL = NORMAL_LABEL
self.ABNORMAL_LABEL = np.abs(1 - self.NORMAL_LABEL)
self.useAllTestData = useAllTestData
self.size = size
self.random_state = random_state
if self.isTrain:
self.train_dir = join_paths([self.data_path, "NORMAL", "nv"])
if not deriving: self.create_train_data()
else:
self.normal_test_dir = join_paths([self.data_path, "NORMAL_TEST", "nv"])
self.abnormal_test_dir = join_paths([self.data_path, "ABNORMAL"])
if not deriving: self.create_test_data()
def create_train_data(self,):
self.data = self.read_images(read_directory_contents(self.train_dir))
self.train_data, self.val_data = train_test_split(self.data, test_size = self.val_split, random_state = self.random_state)
self.batch_read_count = 0
self.firstVal = True
def create_test_data(self,):
self.normal_test_files = read_directory_contents(self.normal_test_dir)
self.abnormal_test_files = dict()
for folder in read_directory_contents(self.abnormal_test_dir):
anomaly_type = folder.split("/")[-1].lower()
self.abnormal_test_files[anomaly_type] = read_directory_contents(join_paths([folder, anomaly_type]))
if not self.useAllTestData:
self.normal_test_files = np.random.choice(self.normal_test_files, self.size)
for anomaly_type, anomalous_files in self.abnormal_test_files.items():
self.abnormal_test_files[anomaly_type] = np.random.choice(anomalous_files, self.size)
# read data and labels [normal, abnormal] for testing
self.normal_data = self.read_images(self.normal_test_files)
self.abnormal_data = dict([(anomaly_type, self.read_images(anomalous_files)) for (anomaly_type, anomalous_files) in self.abnormal_test_files.items()])
def read_images(self, files):
return np.array([read_image(file, self.image_size).astype(np.float32)/255. for file in files])
def train_batch_generator(self):
while True:
start = self.batch_read_count
end = (self.batch_read_count + self.batch_size) if (self.batch_read_count + self.batch_size) < len(self.train_data) else len(self.train_data)
X = self.train_data[start:end]
self.batch_read_count += self.batch_size
if self.batch_read_count >= len(self.train_data):
np.random.shuffle(self.train_data)
self.batch_read_count = 0
yield(X, X)
def val_batch_generator(self):
while True:
if self.firstVal:
np.random.shuffle(self.val_data)
self.firstVal = False
yield(self.val_data, self.val_data)
class IR_DISTRACTION(HAM10000):
def __init__(
self,
data_path = "../datasets/VAD_Datasets/IR_DISTRACTION/",
batch_size = 64,
val_split = 0.1,
image_size = 128,
isTrain = True,
NORMAL_LABEL = 0,
useAllTestData = False,
size = 100,
random_state = 42
):
HAM10000.__init__(self, deriving = True)
self.__name__ = "IR_DISTRACTION"
self.data_path = data_path
self.batch_size = batch_size
self.val_split = val_split
self.image_size = image_size if isinstance(image_size, tuple) else (image_size, image_size)
self.isTrain = isTrain
self.NORMAL_LABEL = NORMAL_LABEL
self.ABNORMAL_LABEL = np.abs(1 - self.NORMAL_LABEL)
self.useAllTestData = useAllTestData
self.size = size
self.random_state = random_state
if self.isTrain:
self.train_dir = join_paths([self.data_path, "NORMAL_TRAIN", "normal_train"])
self.create_train_data()
else:
self.normal_test_dir = join_paths([self.data_path, "NORMAL_TEST", "normal_test"])
self.abnormal_test_dir = join_paths([self.data_path, "ABNORMAL_TEST"])
self.create_test_data()
class MVTec(HAM10000):
def __init__(
self,
data_path = "../datasets/VAD_Datasets/MV_TEC/",
batch_size = 64,
val_split = 0.1,
image_size = 128,
isTrain = True,
NORMAL_LABEL = 0,
useAllTestData = False,
size = 100,
random_state = 42
):
'''
Download from: https://www.mvtec.com/company/research/datasets/mvtec-ad
'''
HAM10000.__init__(self, deriving = True)
self.__name__ = "MVTec"
self.data_path = data_path
self.batch_size = batch_size
self.val_split = val_split
self.image_size = image_size if isinstance(image_size, tuple) else (image_size, image_size)
self.isTrain = isTrain
self.NORMAL_LABEL = NORMAL_LABEL
self.ABNORMAL_LABEL = np.abs(1 - self.NORMAL_LABEL)
self.useAllTestData = useAllTestData
self.size = size
self.random_state = random_state
self.directories_list = read_directory_contents(join_paths([self.data_path, "*"]))
if self.isTrain:
self.create_train_data()
else:
self.create_test_data()
def color_channels(self, images):
# Few files are corrupted in the dataset
corrected = list()
for img in images:
# Fix grayscale [redundant]
if len(img.shape) ==3 and (img.shape[-1] != 3):
corrected.append(img.repeat(3, -1))
# If read as w,h - ignore
elif len(img.shape) < 3:
continue
# Else add to the list
else:
corrected.append(img)
return corrected
def create_train_data(self):
self.data = list()
for category in tqdm(self.directories_list):
self.data += self.color_channels(self.read_images(read_directory_contents(join_paths([category, "train", "good", "*"]))))
self.data = np.array(self.data)
self.train_data, self.val_data = train_test_split(self.data, test_size = self.val_split, random_state = self.random_state)
self.batch_read_count = 0
self.firstVal = True
def create_test_data(self):
self.normal_data = list()
self.categorized_normal_data = dict()
self.abnormal_data = dict()
for category_dir in tqdm(self.directories_list):
category = os.path.split(category_dir)[-1]
category_normal_data = list()
category_abnormal_data = list()
category_test_dir = join_paths([category_dir, "test"])
sub_types = read_directory_contents(join_paths([category_test_dir, "*"]))
for sub_type in sub_types:
sub_type_images = self.color_channels(self.read_images(read_directory_contents(join_paths([sub_type, "*"]))))
if "good" in sub_type:
category_normal_data += sub_type_images
else:
category_abnormal_data += sub_type_images
if len(category_normal_data) < 1: continue
if len(category_abnormal_data) < 1: continue
self.categorized_normal_data[category] = category_normal_data
self.normal_data += category_normal_data
self.abnormal_data[category] = category_abnormal_data
class Chest_XRay(HAM10000):
def __init__(
self,
data_path = "/home/ambreesh/Documents/PROJECTS/COVID19_Preemptive/data/Images/chest_xray/",
batch_size = 64,
val_split = 0.1,
image_size = 128,
isTrain = True,
NORMAL_LABEL = 0,
useAllTestData = False,
size = 100,
random_state = 42
):
HAM10000.__init__(self, deriving = True)
self.data_path = data_path
self.batch_size = batch_size
self.val_split = val_split
self.image_size = image_size if isinstance(image_size, tuple) else (image_size, image_size)
self.isTrain = isTrain
self.NORMAL_LABEL = NORMAL_LABEL
self.ABNORMAL_LABEL = np.abs(1 - self.NORMAL_LABEL)
self.useAllTestData = useAllTestData
self.size = size
self.random_state = random_state
if self.isTrain:
self.train_dir = join_paths([self.data_path, "train", "NORMAL"])
self.val_dir = join_paths([self.data_path, "val", "NORMAL"])
self.create_train_data()
else:
self.normal_test_dir = join_paths([self.data_path, "test", "NORMAL"])
self.abnormal_test_dir = join_paths([self.data_path, "test", "PNEUMONIA"])
self.create_test_data()
def create_train_data(self,):
self.data = self.read_images(read_directory_contents(join_paths([self.train_dir, "*.jpeg"])) + read_directory_contents(join_paths([self.val_dir, "*.jpeg"])))
self.data = np.expand_dims(self.data, axis=-1) # gray scale -> N, W, H, 1
self.train_data, self.val_data = train_test_split(self.data, test_size = self.val_split, random_state = self.random_state)
self.batch_read_count = 0
self.firstVal = True
def create_test_data(self,):
self.normal_data = self.read_images(read_directory_contents(join_paths([self.normal_test_dir, "*.jpeg"])))
self.normal_data = np.expand_dims(self.normal_data, axis = -1)
abnormal_data = self.read_images(read_directory_contents(join_paths([self.abnormal_test_dir, "*.jpeg"])))
abnormal_data = np.expand_dims(abnormal_data, axis = -1)
self.abnormal_data = {"PNEUMONIA": abnormal_data}
# class Chest_CTScans(HAM10000):
# def __init__(
# self,
# data_path = "/home/ambreesh/Documents/PROJECTS/COVID19_Preemptive/data/Images/CT_Scans/",
# batch_size = 64,
# val_split = 0.1,
# image_size = 128,
# isTrain = True,
# NORMAL_LABEL = 0,
# useAllTestData = False,
# size = 100,
# random_state = 42
# ):
# HAM10000.__init__(self, deriving = True)
# self.data_path = data_path
# self.batch_size = batch_size
# self.val_split = val_split
# self.image_size = image_size if isinstance(image_size, tuple) else (image_size, image_size)
# self.isTrain = isTrain
# self.NORMAL_LABEL = NORMAL_LABEL
# self.ABNORMAL_LABEL = np.abs(1 - self.NORMAL_LABEL)
# self.useAllTestData = useAllTestData
# self.size = size
# self.random_state = random_state
# if self.isTrain:
# self.train_dir = join_paths([self.data_path, "train", "CT_NonCOVID"])
# self.val_dir = join_paths([self.data_path, "val", "CT_NonCOVID"])
# self.create_train_data()
# else:
# self.normal_test_dir = join_paths([self.data_path, "test", "CT_NonCOVID"])
# self.abnormal_test_dir = join_paths([self.data_path, "test", "CT_COVID"])
# self.create_test_data()
# def create_train_data(self,):
# self.data = self.read_images(read_directory_contents(join_paths([self.train_dir, "*.png"])) + read_directory_contents(join_paths([self.val_dir, "*.png"])))
# self.data = np.expand_dims(self.data, axis=-1) # gray scale -> N, W, H, 1
# self.train_data, self.val_data = train_test_split(self.data, test_size = self.val_split, random_state = self.random_state)
# self.batch_read_count = 0
# self.firstVal = True
# def create_test_data(self,):
# self.normal_data = self.read_images(read_directory_contents(join_paths([self.normal_test_dir, "*.png"])))
# self.normal_data = np.expand_dims(self.normal_data, axis = -1)
# abnormal_data = self.read_images(read_directory_contents(join_paths([self.abnormal_test_dir, "*.png"])))
# abnormal_data = np.expand_dims(abnormal_data, axis = -1)
# self.abnormal_data = {"COVID": abnormal_data}