-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocces.c
267 lines (220 loc) · 7.45 KB
/
procces.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <math.h>
#include <x86intrin.h> // SIMD命令を使用するためのヘッダファイル
#define MATRIX_SIZE 8
#define SHM_KEY 1234
// 行列を表示する関数
void print_matrix(double A[MATRIX_SIZE][MATRIX_SIZE]) {
for (int i = 0; i < MATRIX_SIZE; i++) {
for (int j = 0; j < MATRIX_SIZE; j++) {
printf("%lf ", A[i][j]);
}
printf("\n");
}
}
// 行列の掛け算関数
void matrix_multiply(double A[MATRIX_SIZE][MATRIX_SIZE], double B[MATRIX_SIZE][MATRIX_SIZE], double *C, int start_row, int end_row) {
for (int i = start_row; i < end_row; i++) {
for (int j = 0; j < MATRIX_SIZE; j++) {
double sum = 0.0;
for (int k = 0; k < MATRIX_SIZE; k++) {
sum += A[i][k] * B[k][j];
}
C[i*MATRIX_SIZE+j] = sum;
}
}
}
/*
int matmul_simd(double matrixA[MATRIX_SIZE][MATRIX_SIZE],double matrixB[MATRIX_SIZE][MATRIX_SIZE],double *resultMatrix,int start_row,int end_row) {
//double resultMatrix[MATRIX_SIZE][MATRIX_SIZE] = {0};
for (int i = start_row; i < end_row; i++) {
for (int j = 0; j < MATRIX_SIZE; j++) {
__m128d sum = _mm_setzero_pd();
for (int k = 0; k < MATRIX_SIZE; k++) {
__m128d a = _mm_set1_pd(matrixA[i][k]);
__m128d b = _mm_loadu_pd(&matrixB[k][j]);
sum = _mm_add_pd(sum, _mm_mul_pd(a, b));
}
_mm_storeu_pd(&resultMatrix[i*MATRIX_SIZE+j], sum);
}
}
return 0;
}
void matrix_inverse_simd(double A[MATRIX_SIZE][MATRIX_SIZE], double result[MATRIX_SIZE][MATRIX_SIZE]) {
double pivot[MATRIX_SIZE];
for (int i = 0; i < MATRIX_SIZE; i++) {
pivot[i] = -1.0;
}
// 1. データ型を__m128dに変更し、SIMDレジスタを使用する
__m128d one = _mm_set1_pd(1.0);
for (int col = 0; col < MATRIX_SIZE; col++) {
int pivot_row = -1;
double max_value = 0.0;
for (int row = 0; row < MATRIX_SIZE; row++) {
if (pivot[row] != -1.0) continue;
double val = fabs(A[row][col]);
if (val > max_value) {
max_value = val;
pivot_row = row;
}
}
if (pivot_row == -1) {
fprintf(stderr, "Matrix is singular.\n");
return;
}
pivot[pivot_row] = col;
// Scale the pivot row
double pivot_value = A[pivot_row][col];
for (int j = 0; j < MATRIX_SIZE; j++) {
A[pivot_row][j] /= pivot_value;
result[pivot_row][j] = A[pivot_row][j];
}
// Eliminate non-zero entries below the pivot
for (int row = 0; row < MATRIX_SIZE; row++) {
if (row == pivot_row) continue;
// 2. SIMDを使用して計算
__m128d scale = _mm_set1_pd(A[row][col]);
for (int j = 0; j < MATRIX_SIZE; j += 2) {
__m128d row_pivot = _mm_loadu_pd(result[pivot_row] + j);
__m128d scaled = _mm_mul_pd(scale, row_pivot);
__m128d row_target = _mm_loadu_pd(result[row] + j);
row_target = _mm_sub_pd(row_target, scaled);
_mm_storeu_pd(result[row] + j, row_target);
}
}
}
}
*/
// 行列の逆行列を計算する関数
void inverseMatrix(double A[MATRIX_SIZE][MATRIX_SIZE], double A_inv[MATRIX_SIZE][MATRIX_SIZE],int start_row,int end_row) {
int i, j, k;
double temp;
// 単位行列を初期化
for (i = start_row; i < end_row; i++) {
for (j = 0; j < MATRIX_SIZE; j++) {
A_inv[i][j] = (i == j) ? 1.0 : 0.0;
}
}
// ガウス・ジョルダン法による逆行列の計算
for (k = start_row; k < end_row; k++) {
temp = A[k][k];
for (j = 0; j < MATRIX_SIZE; j++) {
A[k][j] /= temp;
A_inv[k][j] /= temp;
}
for (i = start_row; i < end_row; i++) {
if (i != k) {
temp = A[i][k];
for (j = 0; j < MATRIX_SIZE; j++) {
A[i][j] -= A[k][j] * temp;
A_inv[i][j] -= A_inv[k][j] * temp;
}
}
}
}
}
// 行列の逆行列を計算する関数
void inverseMatrix2(double A[MATRIX_SIZE][MATRIX_SIZE], double A_inv[MATRIX_SIZE][MATRIX_SIZE]) {
int i, j, k;
double temp;
// 単位行列を初期化
for (i = 0; i < MATRIX_SIZE; i++) {
for (j = 0; j < MATRIX_SIZE; j++) {
A_inv[i][j] = (i == j) ? 1.0 : 0.0;
}
}
// ガウス・ジョルダン法による逆行列の計算
for (k = 0; k < MATRIX_SIZE; k++) {
temp = A[k][k];
for (j = 0; j < MATRIX_SIZE; j++) {
A[k][j] /= temp;
A_inv[k][j] /= temp;
}
for (i = 0; i < MATRIX_SIZE; i++) {
if (i != k) {
temp = A[i][k];
for (j = 0; j < MATRIX_SIZE; j++) {
A[i][j] -= A[k][j] * temp;
A_inv[i][j] -= A_inv[k][j] * temp;
}
}
}
}
}
int main() {
double A[MATRIX_SIZE][MATRIX_SIZE];
double A_inv[MATRIX_SIZE][MATRIX_SIZE];
double C[MATRIX_SIZE][MATRIX_SIZE];
double AA[MATRIX_SIZE][MATRIX_SIZE];
// 行列 A を初期化
for (int i = 0; i < MATRIX_SIZE; i++) {
for (int j = 0; j < MATRIX_SIZE; j++) {
A[i][j] = 1.0 + rand() % 7;
//printf("%lf,",A[i][j]);
// 行列 A のコピーを作成
AA[i][j]=A[i][j];
}
//printf("\n");
}
//inverseMatrix2(A,A_inv);
//matrix_inverse_simd(A,A_inv);
// マルチプロセスで行列掛け算を並列化
int num_processes = 8;
int rows_per_process = MATRIX_SIZE / num_processes;
int shmid = shmget(SHM_KEY, sizeof(double) * MATRIX_SIZE * MATRIX_SIZE, IPC_CREAT | 0666);
if (shmid == -1) {
perror("shmget");
exit(1);
}
double *shared_C = (double *)shmat(shmid, NULL, 0);
if (shared_C == (double *)-1) {
perror("shmat");
exit(1);
}
// 各プロセスで一部の行を計算
for (int i = 0; i < num_processes; i++) {
pid_t pid = fork();
if (pid == 0) {
int start_row = i * rows_per_process;
int end_row = (i + 1) * rows_per_process;
inverseMatrix(A,A_inv,start_row,end_row);
//matmul_simd(AA,A_inv,shared_C,start_row,end_row);
matrix_multiply(AA, A_inv, shared_C, start_row, end_row);
// 結果を表示
printf("Process %d: Rows %d to %d completed\n", i, start_row, end_row);
exit(0);
} else if (pid < 0) {
perror("fork");
exit(1);
}
}
// 親プロセスが子プロセスの終了を待つ
for (int i = 0; i < num_processes; i++) {
int status;
wait(&status);
}
// 結果を表示
printf("Result Matrix:\n");
for (int i = 0; i < MATRIX_SIZE; i++) {
for (int j = 0; j < MATRIX_SIZE; j++) {
printf("%lf ", shared_C[i * MATRIX_SIZE + j]);
}
printf("\n");
}
// 共有メモリを解放
if (shmdt(shared_C) == -1) {
perror("shmdt");
exit(1);
}
if (shmctl(shmid, IPC_RMID, NULL) == -1) {
perror("shmctl");
exit(1);
}
return 0;
}