-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdistance_gatherer.py
248 lines (207 loc) · 9.71 KB
/
distance_gatherer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
# Author: Connor Anderson
# Last Modified Date: December 4, 2017
from pathlib import Path
from itertools import combinations
import csv
import googlemaps
import genetic_algorithm
import time
class Destination:
"""Model class designed to represent a desired waypoint.
"""
def __init__(self, country, city):
self._country = country.title()
self._city = city.title()
@property
def country(self):
return self._country
@property
def city(self):
return self._city
def __str__(self):
return ", ".join((self.city, self.country))
def __repr__(self):
return self.__str__()
def __eq__(self, other):
if isinstance(other, self.__class__):
return self.__dict__ == other.__dict__
else:
return False
def __hash__(self):
return hash((self.city, self.country))
class TravelRoute:
"""Model class designed to represent a route between two points.
"""
def __init__(self, origin, destination, distance, travel_time, units="metric"):
self._origin = origin
self._destination = destination
self._distance = distance
self._travel_time = travel_time
if units.lower() == "metric" or units.lower() == "imperial":
self._units = units
@property
def origin(self):
return self._origin
@property
def destination(self):
return self._destination
@property
def distance_m(self):
if self._units == "imperial":
return self._distance * 0.3048
else:
return self._distance
@property
def distance_km(self):
return self.distance_m / 1000
@property
def distance_ft(self):
if self._units == "metric":
return self._distance * 3.28084
else:
return self._distance
@property
def distance_mi(self):
return self.distance_ft / 5280
@property
def travel_time_seconds(self):
return self._travel_time
@property
def travel_time_minutes(self):
return self._travel_time / 60
@property
def travel_time_hours(self):
return self.travel_time_minutes / 60
@property
def travel_time_days(self):
return self.travel_time_hours / 24
@property
def csv_properties(self):
return [self.origin, self.destination, self.distance_m, self.travel_time_seconds]
def __str__(self):
return self.origin + " to " + self._destination + " -> Distance (m): " + str(self.distance_m) + " Time (s): " + str(self.travel_time_seconds)
def __repr__(self):
return self.__str__()
class DestinationUtils:
"""Utility class that handles miscellaneous functions (particularly file-based) for the distance_gatherer module.
"""
@staticmethod
def parse_destinations_from_csv(filename):
file = Path(filename)
destinations = []
if file.exists():
with open(filename) as destination_csv:
destination_reader = csv.reader(destination_csv)
for destination in destination_reader:
destinations.append(Destination(destination[0], destination[1]))
else:
raise FileNotFoundError
return destinations
@staticmethod
def write_routes_to_csv(routes, filename="travel_routes.csv"):
with open(filename, "w") as routes_csv:
route_writer = csv.writer(routes_csv)
for route in routes:
route_writer.writerow(route.csv_properties)
@staticmethod
def read_routes_from_csv(filename="travel_routes.csv"):
destination_route_map = {}
with open(filename, "r") as routes_csv:
route_reader = csv.reader(routes_csv)
for row in route_reader:
origin_strings = row[0].split(', ')
destination_strings = row[1].split(', ')
origin = Destination(city=origin_strings[0], country=origin_strings[1])
destination = Destination(city=destination_strings[0], country=destination_strings[1])
route = TravelRoute(origin, destination, int(row[2]), int(row[3]))
destination_route_map[(origin, destination)] = route
return destination_route_map
@staticmethod
def write_route_to_txt(route, filename="route.txt"):
with open(filename, "w") as route_txt:
for destination in route:
route_txt.write(str(destination) + "\n")
@staticmethod
def write_route_maps_url(route):
maps_url = "https://www.google.com/maps/dir/"
for destination in route:
maps_url += str(destination) + "/"
return maps_url.replace(" ", "+")
class DistanceMatrixApiFacade:
"""Wrapper class that simplifies the usage of the Google Maps Distance Matrix API
"""
def __init__(self, api_key):
self._api_key = api_key
self._gmaps_client = googlemaps.Client(key=api_key)
def get_driving_routes(self, destinations):
destination_route_map = {}
for destination1, destination2 in combinations(destinations, 2):
try:
gmaps_response = self._gmaps_client.distance_matrix(origins=str(destination1),
destinations=str(destination2),
mode="driving",
language="English")
route = TravelRoute(destination1, destination2,
gmaps_response["rows"][0]["elements"][0]["distance"]["value"],
gmaps_response["rows"][0]["elements"][0]["duration"]["value"])
destination_route_map[(destination1, destination2)] = route
except Exception as e:
print("Error retrieving Google Maps info for %s and %s" % str(destination1), str(destination2))
return destination_route_map
class RouteDistanceFitnessFunction(genetic_algorithm.FitnessFunction):
"""Implementation class that can be used evaluate the fitness of a proposed route on the basis of its distance.
"""
def __init__(self, destination_route_map):
self._destination_route_map = destination_route_map
super(RouteDistanceFitnessFunction, self).__init__()
def evaluate(self, organism):
distance_traveled = 0.0
for locus, destination in enumerate(organism):
destination1 = organism[locus - 1]
destination2 = organism[locus]
if (destination1, destination2) in self._destination_route_map:
distance_traveled += self._destination_route_map[(destination1, destination2)].distance_m
elif (destination2, destination1) in self._destination_route_map:
distance_traveled += self._destination_route_map[(destination2, destination1)].distance_m
else:
raise ValueError("Organism contains nonmapped travel route for {0} and {1}".format(str(destination1),
str(destination2)))
return distance_traveled
class TravelingSalesmanGeneticAlgorithm(genetic_algorithm.GeneticAlgorithm):
"""Implementation class that implements an approximate solution to the Traveling Salesman Problem using a Genetic Algorithm.
"""
def create_new_generation(self, current_population):
selected_organisms = self._selection_function(current_population, self._fitness_function)()
new_generation = self._crossover_function(selected_organisms,
len(current_population) - len(selected_organisms))()
return self._mutation_function(new_generation)()
if __name__ == "__main__":
"""Script designed to use the distance_gatherer and genetic_algorithm modules to demonstrate successful application of
Genetic Algorithms as they pertain to approximation of the Traveling Salesman Problem.
"""
generations = 10000
population_size = 100
destinations = DestinationUtils.parse_destinations_from_csv('european_capitals.csv')
# with open("googlemaps_api_key") as api_file:
# api_key = api_file.readline()
# distance_matrix_api = DistanceMatrixApiFacade(api_key)
# destination_route_map = distance_matrix_api.get_driving_routes(destinations)
# DestinationUtils.write_routes_to_csv(list(destination_route_map.values()))
destination_route_map = DestinationUtils.read_routes_from_csv()
popInitializer = genetic_algorithm.PermutationPopulationInitializer(destinations)
initial_population = popInitializer.create_population(population_size)
fitness_function = RouteDistanceFitnessFunction(destination_route_map)
selection_function = genetic_algorithm.TopTenPercentSelectionFunction
crossover_function = genetic_algorithm.OrderCrossoverFunction
mutation_function = genetic_algorithm.ShuffleMutationFunction
tsp_genetic_algorithm = TravelingSalesmanGeneticAlgorithm(selection_function, fitness_function,
crossover_function, mutation_function,
initial_population, generations)
start_time = time.time()
optimum_route = tsp_genetic_algorithm.run()
end_time = time.time()
filename = "optimum_route_gen{0}_pop{1}.txt".format(str(generations), str(population_size))
DestinationUtils.write_route_to_txt(optimum_route, filename)
print("Optimum Route found in {0} seconds, after {1} generations, with population size: {2}.".format(
str(end_time - start_time), str(generations), str(population_size)))
print("Route has been written to {0}".format(filename))