-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenetic_algorithm.py
234 lines (184 loc) · 8.27 KB
/
genetic_algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# Author: Connor Anderson
# Last Modified Date: November 30, 2017
from abc import ABC, abstractmethod
from ordered_set import OrderedSet
import random
class GeneticAlgorithm(ABC):
"""Abstract class that allows for customized implementation of general Genetic Algorithm (GA).
"""
def __init__(self, selection_function, fitness_function, crossover_function,
mutation_function, population, num_generations=500):
self._selection_function = selection_function
self._fitness_function = fitness_function
self._crossover_function = crossover_function
self._mutation_function = mutation_function
self._population = population
self._num_generations = num_generations
def run(self):
current_population = self._population
for generation in range(self._num_generations):
current_population = self.create_new_generation(current_population)
return self._selection_function(current_population, self._fitness_function).optimum_value
@abstractmethod
def create_new_generation(self, current_population):
pass
class PopulationInitializer(ABC):
"""Abstract class that allows for customized implementation of general Population Initializer for GA's.
"""
def __init__(self, alphabet):
self._alphabet = alphabet
def create_population(self, population_size, chromosome_length=None):
population = []
for organism in range(population_size):
population.append(self.create_organism(chromosome_length))
return tuple(population)
@abstractmethod
def create_organism(self, chromosome_length):
pass
class PermutationPopulationInitializer(PopulationInitializer):
"""Implementation class that allows for creation of a permuted population for use in GA's.
"""
def create_organism(self, chromosome_length=None):
if chromosome_length is None:
chromosome_length = len(self._alphabet)
new_organism = random.sample(list(self._alphabet), chromosome_length)
return tuple(new_organism)
# TODO: Separate use of fitness function from selection function
class SelectionFunction(ABC):
"""Abstract class that allows for customized implementation of general Selection Function for GA's.
"""
def __init__(self, population, fitness_function):
self._population = population
self._fitness_function = fitness_function
fitness_values = {}
for organism in population:
if organism in fitness_values:
continue
fitness_values[organism] = self._fitness_function(organism)
self._sorted_organisms = sorted(fitness_values, key=fitness_values.get)
def __call__(self):
return self.select()
@property
def optimum_value(self):
return self._sorted_organisms[0]
@abstractmethod
def select(self):
pass
class TopTenPercentSelectionFunction(SelectionFunction):
"""Implementation class that selects the top 10 percent of a population for subsequent breeding.
"""
def select(self):
population_size = len(self._population)
ten_percent_index = round(population_size * 0.1)
return self._sorted_organisms[:ten_percent_index]
class FitnessFunction(ABC):
"""Abstract class that allows for customized implementation of general Fitness Function for use in Selection Function.
"""
def __call__(self, organism):
return self.evaluate(organism)
@abstractmethod
def evaluate(self, organism):
pass
class CrossoverFunction(ABC):
"""Abstract class that allows for customized implementation of general Crossover Function for GA's.
"""
def __init__(self, parent_pool, num_offspring):
self._parent_pool = parent_pool
self._num_offspring = num_offspring
def __call__(self):
new_generation = []
for parent in self._parent_pool:
new_generation.append(parent)
return tuple(new_generation + self.breed())
def breed(self):
offspring = []
for i in range(self._num_offspring):
parents = random.sample(self._parent_pool, 2)
offspring.append(self.crossover(parents[0], parents[1]))
return offspring
@abstractmethod
def crossover(self, parent1, parent2):
pass
class OrderCrossoverFunction(CrossoverFunction):
"""Implementation class that allows for crossover in organisms whose chromosomes are order-dependent.
"""
def __init__(self, parent_pool, num_offspring, crossover_prob=25):
if crossover_prob <= 0 or crossover_prob > 100:
raise ValueError("Crossover probability must be within range of 0 to 100")
self._crossover_prob = crossover_prob
super(OrderCrossoverFunction, self).__init__(parent_pool, num_offspring)
def crossover(self, parent1, parent2):
parent1_length = len(parent1)
parent2_length = len(parent2)
if parent1_length != parent2_length:
raise ValueError("Parents must be of same length")
offspring = []
allele_ordered_set = OrderedSet()
for allele in parent1:
if RandomUtils.randboolweighted(self._crossover_prob):
allele_ordered_set.append(allele)
crossover_set_position = 0
for allele in parent2:
if allele in allele_ordered_set:
offspring.append(allele_ordered_set[crossover_set_position])
crossover_set_position += 1
else:
offspring.append(allele)
return tuple(offspring)
class MutationFunction(ABC):
"""Abstract class that allows for customized implementation of general Mutation Function for GA's.
"""
def __init__(self, population):
self._population = list(population)
def __call__(self):
for index, organism in enumerate(self._population):
if RandomUtils.randboolweighted(5):
mutated_organism = self.mutate(organism)
self._population[index] = mutated_organism
return tuple(self._population)
@abstractmethod
def mutate(self, organism):
pass
class PointMutationFunction(MutationFunction):
"""Implementation class that allows for point to point mutation of organisms in a GA.
"""
def mutate(self, organism):
organism = list(organism)
locus1 = random.randint(0, len(organism) - 1)
locus2 = locus1
while locus1 == locus2:
locus2 = random.randint(0, len(organism) - 1)
organism[locus1], organism[locus2] = organism[locus2], organism[locus1]
return tuple(organism)
class ShuffleMutationFunction(MutationFunction):
"""Implementation class that allows for a mutation based on shifting a subset of an organism's chromosome in a GA.
"""
def __init__(self, population, shuffle_length=None):
if shuffle_length is None:
if len(population) > 10:
shuffle_length = 10
else:
shuffle_length = len(population) - 1
if shuffle_length <= 0 or shuffle_length >= len(population):
raise ValueError("Length of shuffle must be greater than 0 and less than the size of the population")
self._shuffle_length = shuffle_length
super(ShuffleMutationFunction, self).__init__(population)
def mutate(self, organism):
start_locus = random.randint(0, len(organism) - 1)
insertion_locus = start_locus
while start_locus == insertion_locus:
insertion_locus = random.randint(0, len(organism) - 1)
mutation_length = random.randint(1, self._shuffle_length)
mutation_subset = organism[start_locus:start_locus + mutation_length]
mutated_organism = organism[:start_locus] + organism[start_locus + mutation_length:]
while start_locus == insertion_locus:
insertion_locus = random.randint(0, len(mutated_organism) - 1)
return tuple(mutated_organism[:insertion_locus] + mutation_subset + mutated_organism[insertion_locus:])
class RandomUtils:
"""Utility class to handle miscellaneous functions.
"""
@staticmethod
def randboolweighted(percentage=50):
if percentage <= 0 or percentage > 100:
raise ValueError("Percentage must be within range of 0 to 100")
return random.randint(0, 99) < percentage