forked from breadbread1984/LAPGAN-pt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
40 lines (34 loc) · 1.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#!/usr/bin/python3
from os import mkdir;
from os.path import exists, join;
import argparse;
from torch import save;
import pytorch_lightning as pl;
from pytorch_lightning.callbacks import ModelCheckpoint;
from pytorch_lightning.loggers import TensorBoardLogger;
from models import Trainer;
from create_dataset import CIFAR10Dataset;
def main():
pl.seed_everything(1234);
parser = argparse.ArgumentParser();
parser = pl.Trainer.add_argparse_args(parser);
parser = Trainer.add_model_specific_args(parser);
parser.add_argument('--batch_size', type = int, default = 256);
parser.add_argument('--num_workers', type = int, default = 8);
parser.add_argument('--download', type = bool, default = False);
parser.add_argument('--checkpoint', type = str, default = None);
parser.add_argument('--epochs', type = int, default = 25);
args = parser.parse_args();
dataset = CIFAR10Dataset(args);
model = Trainer(args) if args.checkpoint is None else Trainer.load_from_checkpoint(args = args, checkpoint_path = args.checkpoint);
callbacks = [ModelCheckpoint(every_n_train_steps = 10)];
logger = TensorBoardLogger('tb_logs', name = 'LAPGAN', log_graph = True);
kwargs = dict();
trainer = pl.Trainer.from_argparse_args(args, max_epochs = args.epochs, val_check_interval = 0.1, callbacks = callbacks, logger = logger, **kwargs);
trainer.fit(model, dataset);
if not exists('models'): mkdir('models');
save(model.generators[0], join('models', 'gen_0.pth'));
save(model.generators[1], join('models', 'gen_1.pth'));
save(model.generators[2], join('models', 'gen_2.pth'));
if __name__ == "__main__":
main();