-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtutorial.Rmd
666 lines (572 loc) · 18.4 KB
/
tutorial.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
---
title: 'T-cell repertoire annotation and motif discovery'
author: 'Mikhail Shugay'
institute: 'Skolkovo Institute of Science and Technology'
date: 2020
output:
pdf_document: default
html_document: default
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
# libs
library(dplyr)
library(data.table)
library(ggplot2)
library(forcats)
library(parallel)
library(stringr)
library(reshape2)
library(igraph)
library(msa)
library(stringdist)
library(broom)
library(GGally)
library(ggseqlogo)
library(network)
library(gridExtra)
library(cowplot)
# system resources
CORES <- 4
MEMORY <- "6G"
# dirs
DATA_DIR <- "data/"
#OUTPUT_DIR <- "output/"
#system(paste0("mkdir ", OUTPUT_DIR))
# java
#EXEC_DIR <- dirname(rstudioapi::getSourceEditorContext()$path)
#Sys.setenv(CLASSPATH=EXEC_DIR)
run_java <- function(software, args, print_log = F) {
cmd <- str_glue("java -Xmx{MEMORY} -jar software/{software}.jar {args}")
code <- system(cmd,
ignore.stdout = !print_log,
ignore.stderr = !print_log)
if(code != 0) {
stop(str_glue("Failed to execute '{cmd}'"))
}
}
system("java -version")
run_java("vdjtools", "-h")
run_java("vdjmatch", "-h")
```
# RepSeq sample annotation
Here is the layout of our experiment, datasets were selected from *Emerson et al. Nat Genet 2017*.
Samples:
```
(B35+) HIP02877 A*26 A*33 B*14 B*35 CMV-
(CMV+) HIP13994 A*02 A*02 B*07 B*44 CMV+
```
Controls:
```
(Control-1) HIP03484 A*02 A*02 B*07 B*58 CMV-
(Control-2) HIP03592 A*02 A*32 B*07 B*39 CMV-
(Control-3) HIP04532 A*02 A*24 B*07 B*51 CMV-
(Control-4) HIP04576 A*02 A*30 B*07 B*18 CMV-
```
Compute some basic statistics using VDJtools.
```{r}
run_java("vdjtools",
"CalcBasicStats data/control.txt.gz data/CMV+.txt.gz data/B35+.txt.gz output/",
T)
```
Number of reads and clonotypes per sample:
```{r}
df.stats <- fread("output/basicstats.txt")
df.stats
```
Annotate samples using VDJmatch. The following arguments are used:
* ``match`` runs routine that matches samples against VDJdb
* ``-S human`` sets species
* ``-R TRB`` sets receptor chain
* ``-O 1,0,1`` sets the search scope - number of substitutions, indels and total number of mutations. Here we'll just allow a single substitution. Note that allowing indels can make results quite messy (need to use correct scoring with ``-A`` argument)
* ``--min-epi-size 30`` will select VDJdb epitopes that have at least 30 unique TCR records
```{r}
run_java("vdjmatch",
"match -S human -R TRB -O 1,0,1 --min-epi-size 30 data/control.txt.gz data/CMV+.txt.gz data/B35+.txt.gz output/vdjdb",
T)
```
Lets explore annotation results. Load and quality-filter VDJdb annotations
```{r}
# Read in data
list("control", "CMV+", "B35+") %>%
lapply(function(x)
"output/vdjdb.{x}.txt" %>%
str_glue() %>%
fread() %>%
mutate(sample_id = x)) %>%
rbindlist() %>%
mutate(mhc.a = str_split_fixed(mhc.a, "[:,]", 2)[,1]) %>%
group_by(cdr3aa, antigen.epitope, antigen.species,
mhc.a, sample_id, vdjdb.score, reference.id) %>%
summarise(freq = sum(freq), count = sum(count)) %>%
ungroup -> df.vdjdb
df.vdjdb %>%
head
nrow(df.vdjdb)
# Select unambigous assignments
df.vdjdb.good <- df.vdjdb %>%
select(cdr3aa, antigen.epitope, mhc.a, vdjdb.score, reference.id) %>%
unique %>%
group_by(cdr3aa) %>%
mutate(vdjdb.score.max = max(vdjdb.score)) %>%
filter(vdjdb.score == vdjdb.score.max) %>%
# In case of ties select the one with max # publications
group_by(cdr3aa) %>%
# !!IMPORTANT!! Only count Pubmed papers to select records
# otherwise we'll get lots of multiple specificity assignments from 10X
mutate(num.pub = str_count(reference.id, "PMID"),
num.pub.max = max(num.pub)) %>%
filter(num.pub == num.pub.max) %>%
# Remove all remaining ambigous cases
group_by(cdr3aa) %>%
mutate(num.spec = length(unique(antigen.epitope))) %>%
filter(num.spec == 1) %>%
ungroup
# Apply filter
df.vdjdb <- df.vdjdb %>%
merge(df.vdjdb.good)
# Some naming fixes
df.vdjdb <- df.vdjdb %>%
mutate(epi.name = paste(substr(str_split_fixed(mhc.a, "[,:]", 2)[,1], 5, 10),
substr(antigen.epitope, 1, 3)),
antigen.species = ifelse(startsWith(antigen.species, "DENV"),
"DengueVirus",
antigen.species))
nrow(df.vdjdb)
# Split control
df.vdjdb.control <- df.vdjdb %>%
filter(sample_id == "control")
df.vdjdb <- df.vdjdb %>%
filter(sample_id != "control")
```
Plot all VDJdb annotations
```{r}
p1 <- df.vdjdb %>%
ggplot(aes(x = fct_reorder2(epi.name,
freq,
as.integer(as.factor(antigen.species))),
y = count,
color = antigen.species)) +
geom_boxplot(data = df.vdjdb.control %>% select(-sample_id),
color = "grey", fill = "grey") +
geom_boxplot(fill = NA) +
coord_flip() +
scale_y_log10("# reads") + xlab("") +
scale_color_brewer("Ag. species", palette = "Paired") +
facet_wrap(~sample_id) +
theme_bw() +
theme(panel.grid = element_blank(),
strip.background = element_blank())
p1
pdf("output/p1.pdf")
p1
dev.off()
df.vdjdb %>%
group_by(sample_id, epi.name) %>%
filter(n() > 5) %>%
do(wilcox.test(.$count,
df.vdjdb.control %>%
filter(epi.name == (.$epi.name)[1]) %>% .$count) %>% tidy) %>%
mutate(p.value.adj = p.adjust(p.value)) %>%
arrange(p.value)
```
Zoom in/filter results based on donor HLA haplotype knowledge.
```{r}
df.vdjdb.f <- df.vdjdb %>%
filter(
(sample_id == "B35+" & startsWith(mhc.a, "HLA-A*26")) |
(sample_id == "B35+" & startsWith(mhc.a, "HLA-A*33")) |
(sample_id == "B35+" & startsWith(mhc.a, "HLA-B*14")) |
(sample_id == "B35+" & startsWith(mhc.a, "HLA-B*35")) |
(sample_id == "CMV+" & startsWith(mhc.a, "HLA-A*02") & antigen.species == "CMV") |
(sample_id == "CMV+" & startsWith(mhc.a, "HLA-B*07") & antigen.species == "CMV") |
(sample_id == "CMV+" & startsWith(mhc.a, "HLA-B*44") & antigen.species == "CMV")
)
df.vdjdb.c <- df.vdjdb.control %>%
mutate(sample_id = "B35+") %>%
filter(startsWith(mhc.a, "HLA-A*26") |
startsWith(mhc.a, "HLA-A*33") |
startsWith(mhc.a, "HLA-B*14") |
startsWith(mhc.a, "HLA-B*35") ) %>%
rbind(
df.vdjdb.control %>%
mutate(sample_id = "CMV+") %>%
filter(startsWith(mhc.a, "HLA-A*02") & antigen.species == "CMV" |
startsWith(mhc.a, "HLA-B*07") & antigen.species == "CMV" |
startsWith(mhc.a, "HLA-B*44") & antigen.species == "CMV"
)
)
p2 <- df.vdjdb.f %>%
ggplot(aes(x = fct_reorder2(epi.name,
freq,
as.integer(as.factor(antigen.species))),
y = count,
color = antigen.species)) +
geom_boxplot(data = df.vdjdb.c,
color = "grey60", fill = "grey") +
geom_boxplot(fill = NA) +
scale_y_log10("# reads") + xlab("") +
scale_color_brewer("Ag. species", palette = "Set1") +
facet_grid(.~sample_id, scales = "free", space = "free") +
theme_bw() +
theme(panel.grid = element_blank(),
axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1),
strip.background = element_blank())
p2
pdf("output/p2.pdf")
p2
dev.off()
df.vdjdb.f %>%
group_by(sample_id, epi.name) %>%
do(wilcox.test(.$count, df.vdjdb.c %>%
filter(epi.name == (.$epi.name)[1]) %>% .$count) %>% tidy) %>%
ungroup %>%
mutate(p.value.adj = p.adjust(p.value))
```
# Searching for "expanded" TCR groups
We will not look at the actual number of reads per clonotype here, but do it the other way. We will search for groups of homologous TCR sequences that are unlikely to be found in the sample simply by chance. Here we run TCR neighbourhood enrichment test (TCRNET) to select TCR groups enriched in the memory compartment.
* ``CalcDegreeStats`` runs TCRNET routine
* ``-o 1,0,1`` sets the search scope - match with one substitution
* ``-g2 vj`` compute the number of clonotypes with the same V/J combination, corrects for differential V/J usage
* ``-b data/control.txt.gz`` specifies the control (background dataset)
```{r}
run_java("vdjtools",
"CalcDegreeStats -o 1,0,1 -g2 vj -b data/control.txt.gz data/CMV+.txt.gz data/B35+.txt.gz output/tcrnet",
T)
```
Let's have a look at TCRNET P-values, correct them and select enriched clonotypes
```{r}
# Load all data
list("CMV+", "B35+") %>%
lapply(function(x)
"output/tcrnet.{x}.txt" %>%
str_glue() %>%
fread() %>%
mutate(sample_id = x)) %>%
rbindlist(fill = T) -> df.tcrnet
# Have a glance on output table
df.tcrnet %>%
head
# Remove singletons, correct P-values
df.tcrnet <- df.tcrnet %>%
group_by(sample_id) %>%
mutate(p.adj = p.adjust(p.value.g2),
fold = (degree.s + 1) / group.count.s /
(degree.c + 1) * group.count.c) %>%
ungroup
# Select enriched variants
df.tcrnet.e <- df.tcrnet %>%
filter(p.adj < 0.05)
df.tcrnet.e %>%
group_by(sample_id) %>%
summarise(count = n())
```
Some correlation between enrichment fold and clonotype frequency
```{r}
# Volcano-like plot
p3 <- df.tcrnet.e %>%
ggplot(aes(x = freq, y = fold, fill = -log10(p.adj + 1e-10))) +
geom_point(shape = 21) +
scale_x_log10("Frequency") +
scale_y_log10("Enrichment fold") +
scale_fill_distiller("-log10 P-value", palette = "RdBu") +
facet_wrap(~sample_id) +
theme_bw() +
theme(panel.grid.minor = element_blank(),
strip.background = element_blank())
p3
pdf("output/p3.pdf")
p3 + theme(aspect = 1)
dev.off()
df.tcrnet.e %>%
group_by(sample_id) %>%
do(cor.test(.$fold, .$freq, method = "spearman") %>% tidy)
```
## Extracting enriched groups of homologous TCRs
Compute graph with $1$ substitution allowed. Here we'll use all clonotypes (except singletons) that are neighbours of enriched clonotypes.
```{r}
# Hamming distance
find_pairs <- function(x, y = x) {
res <- stringdistmatrix(x, y,
method = "hamming",
useNames = "strings",
nthread = CORES) %>%
melt %>%
filter(value == 1) %>%
select(-value)
colnames(res) <- c("from.cdr3", "to.cdr3")
res
}
# Graph data frame
df.tcrnet.e %>%
.$sample_id %>%
unique %>%
as.list %>%
lapply(function(x)
find_pairs(df.tcrnet.e %>% filter(sample_id == x) %>% .$cdr3aa %>% unique,
df.tcrnet %>% filter(sample_id == x) %>% .$cdr3aa %>% unique) %>%
mutate(sample_id = x)
) %>%
rbindlist -> df.graph
# random graph - top 3000 clonotypes
df.tcrnet.e %>%
.$sample_id %>%
unique %>%
as.list %>%
lapply(function(x)
find_pairs(df.tcrnet %>%
filter(sample_id == x, !grepl("[_*]", cdr3aa)) %>%
arrange(-count) %>%
head(n = 3000) %>%
.$cdr3aa %>%
unique) %>%
mutate(sample_id = x)
) %>%
rbindlist -> df.graph.rnd
df.graph %>%
head
df.graph.rnd %>%
head
```
Layout and plot graphs. Highlight connected components/clusters
```{r}
# graph layout/component naming function
layout_graph <- function(graph) {
set.seed(42)
gg <- graph %>%
select(-sample_id) %>%
graph_from_data_frame %>%
simplify
cc <- clusters(gg)
coords <- gg %>%
layout_with_graphopt(niter = 3000, charge = 0.005)
data.frame(cdr3aa = names(V(gg)),
x = coords[,1],
y = coords[,2],
stringsAsFactors = F) %>%
merge(
data.frame(cdr3aa = names(cc$membership),
cid = cc$membership,
cid2 = paste0(graph$sample_id[1], "_C", cc$membership)))
}
# apply to both samples
compute_mds <- function(graph) {
graph %>%
group_by(sample_id) %>%
do(layout_graph(.)) %>%
ungroup %>%
merge(df.tcrnet %>%
group_by(cdr3aa, sample_id) %>%
summarise(freq = sum(freq)),
by = c("cdr3aa", "sample_id"))
}
df.mds <- compute_mds(df.graph)
df.mds.rnd <- compute_mds(df.graph.rnd)
# plot 2D graph layout colored by connected component
p4 <- df.mds.rnd %>%
ggplot(aes(x = x, y = y,
size = sqrt(freq))) +
geom_point(color = "grey40", alpha = 0.9) +
xlab("MDS1") + ylab("MDS2") +
scale_size(guide = F) +
facet_wrap(~sample_id) +
theme_bw() +
theme(aspect = 1,
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
strip.background = element_blank())
p4
pdf("output/p4.pdf")
p4 + geom_point(color = "grey40")
dev.off()
p5 <- df.mds %>%
ggplot(aes(x = x, y = y,
size = sqrt(freq))) +
geom_point(aes(color = as.integer(factor(cid))), alpha = 0.9) +
xlab("MDS1") + ylab("MDS2") +
scale_color_distiller(guide = F, palette = "Set1") +
scale_size(guide = F) +
facet_wrap(~sample_id) +
theme_bw() +
theme(aspect = 1,
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
strip.background = element_blank())
p5
pdf("output/p5.pdf")
p5 + geom_point(aes(color = as.integer(factor(cid))))
dev.off()
```
# Combining TCRNET results and VDJdb annotations
Color graph by annotations
```{r}
# append annotations
df.mds.ag.freq <- df.mds %>%
merge(df.vdjdb.f %>%
mutate(epi.name = paste(antigen.species, epi.name)) %>%
select(cdr3aa, epi.name, sample_id) %>% unique,
all.x = T, by = c("cdr3aa", "sample_id"))
# plot graph layout colored by annotation
p6 <- ggplot(df.mds.ag.freq %>% filter(!is.na(epi.name)),
aes(x = x, y = y, color = factor(epi.name),
size = sqrt(freq)
)) +
geom_point(data = df.mds.ag.freq, color = "grey") +
geom_point() +
xlab("MDS1") + ylab("MDS2") +
scale_color_brewer("Epitope", palette = "Set1") +
scale_size(guide = F) +
facet_wrap(~sample_id) +
theme_bw() +
theme(aspect = 1,
legend.position = "bottom",
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
strip.background = element_blank())
p6
pdf("output/p6.pdf")
p6
dev.off()
```
Get IDs of interesting clusters
```{r}
cluster.annot.stats <- df.mds.ag.freq %>%
group_by(sample_id) %>%
mutate(total.sample = n()) %>%
group_by(sample_id, epi.name) %>%
mutate(total.epi = n()) %>%
group_by(sample_id, cid2) %>%
mutate(total.cluster = n()) %>%
filter(!is.na(epi.name)) %>%
group_by(sample_id, cid2, epi.name, total.sample, total.epi, total.cluster) %>%
# fraction annotated of all nodes in component
summarise(count.matched = n()) %>%
arrange(-count.matched) %>%
ungroup %>%
mutate(fraction.matched = count.matched / total.cluster,
fraction.matched.e = total.epi / total.sample) %>%
ungroup %>%
group_by(sample_id, cid2, epi.name, total.sample, total.epi, total.cluster, fraction.matched) %>%
do(binom.test(.$count.matched, .$total.cluster, .$fraction.matched.e) %>% tidy) %>%
mutate(p.value.adj = p.adjust(p.value)) %>%
arrange(p.value)
cluster.annot.stats
cluster.annot.stats %>% fwrite("output/annot.stats.txt", sep = "\t")
```
Plotting motifs
```{r}
# fetching sequences
get_seqs_cid <- function(cc) {
df.mds.ag.freq %>%
filter(cid2 == cc) %>%
.$cdr3aa
}
# multiple sequence alignment
align_seqs <- function(seqs, cons = F) {
x <- seqs %>% AAStringSet %>% msa(method = "ClustalW")
if (cons) {
return(msaConsensusSequence(.x))
} else {
return(x %>%
as.matrix %>%
melt %>%
mutate(seq_id = Var1, base_id = Var2, aa = value) %>%
select(-Var1, -Var2, -value) %>%
group_by(seq_id) %>%
mutate(seq = paste0(aa[base_id], collapse = "")) %>%
ungroup)
}
}
## Plotting
# plots a grid of AAs from multiple alignment
plot_seqgrid <- function(seqs) {
seqs %>%
align_seqs %>%
ggplot(aes(x=base_id, y=seq_id)) +
geom_text(aes(label=aa), size = 3) +
scale_x_continuous("", breaks = c(),
expand = c(0.105, 0)) +
theme_logo() +
theme(legend.position = 'none')
}
# plots sequence logo from multiple alignment
plot_seqlogo <- function(seqs) {
seqs %>% align_seqs %>% .$seq %>% unique %>% ggseqlogo +
theme(legend.position = 'none')
}
# plots graph using igraph
plot_seqgraph <- function(cc, epitope) {
set.seed(42)
ss <- (df.mds.ag.freq %>%
filter(cid2 == cc) %>%
.$sample_id)[1]
seqs <- get_seqs_cid(cc)
df.graph %>%
filter(sample_id == ss, to.cdr3 %in% seqs | from.cdr3 %in% seqs) %>%
select(to.cdr3, from.cdr3) %>%
unique %>%
as.matrix %>%
network -> nn
seqs_annot <- df.mds.ag.freq %>%
filter(epi.name == epitope & cid2 == cc) %>%
.$cdr3aa
grp <- ifelse(network.vertex.names(nn) %in% seqs_annot, "g1", "g2")
nn %v% "group" <- grp
clrs <- c("black", "red")
names(clrs) <- c("g2", "g1")
nn %>% ggnet2(color = "group",
size = 5,
color.palette = clrs,
legend.position = "none") +
ggtitle(paste(cc, epitope))
}
# make all plots
plot_cid_full <- function(cc) {
plotlist <- cc %>% strsplit(",") %>% lapply(function(x)
plot_seqgraph(x[1], x[2])
)
#plotlist <- c(plotlist,
# cc %>% as.list %>% lapply(function(x)
# x %>% get_seqs_cid %>% plot_seqgrid
# )
# )
plotlist <- c(plotlist,
cc %>% strsplit(",") %>% lapply(function(x)
x[1] %>% get_seqs_cid %>% plot_seqlogo
)
)
plotlist
}
plot_grid(plotlist = plot_cid_full(c("B35+_C1,EBV B*35 EPL",
"CMV+_C11,CMV B*07 TPR",
"CMV+_C13,CMV A*02 NLV")),
ncol = 3, nrow = 3, align = 'v')
pdf("ms/Fig4d.pdf", width = 7, height = 6)
plot_grid(plotlist = plot_cid_full(c("B35+_C1,EBV B*35 EPL",
"CMV+_C11,CMV B*07 TPR",
"CMV+_C13,CMV A*02 NLV")),
ncol = 3, nrow = 3, align = 'v')
dev.off()
```
Something we have missed
```{r}
get_top_clonotypes <- function(sample, allele) {
df.vdjdb.f %>%
filter(sample_id == sample) %>%
filter(startsWith(mhc.a, allele)) %>%
group_by(mhc.a, cdr3aa) %>%
summarise(count = sum(count), freq = sum(freq)) %>%
merge(df.mds.ag.freq %>% select(cdr3aa, cid2), all.x = T) %>%
arrange(-count) %>%
head(10)
}
get_top_clonotypes("CMV+", "HLA-A*02")
get_top_clonotypes("CMV+", "HLA-B*07")
get_top_clonotypes("CMV+", "HLA-A*02") %>%
fwrite("output/top_a02.txt", sep = "\t")
get_top_clonotypes("CMV+", "HLA-B*07") %>%
fwrite("output/top_b07.txt", sep = "\t")
```
```{r}
#
```