-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnpy.hpp
618 lines (485 loc) · 19.1 KB
/
npy.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
/*
Copyright 2017 Leon Merten Lohse
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#ifndef NPY_H
#define NPY_H
#include <complex>
#include <fstream>
#include <string>
#include <iostream>
#include <sstream>
#include <cstdint>
#include <cstring>
#include <vector>
#include <stdexcept>
#include <algorithm>
#include <unordered_map>
#include <type_traits>
#include <iterator>
namespace npy {
/* Compile-time test for byte order.
If your compiler does not define these per default, you may want to define
one of these constants manually.
Defaults to little endian order. */
#if defined(__BYTE_ORDER) && __BYTE_ORDER == __BIG_ENDIAN || \
defined(__BIG_ENDIAN__) || \
defined(__ARMEB__) || \
defined(__THUMBEB__) || \
defined(__AARCH64EB__) || \
defined(_MIBSEB) || defined(__MIBSEB) || defined(__MIBSEB__)
const bool big_endian = true;
#else
const bool big_endian = false;
#endif
const char magic_string[] = "\x93NUMPY";
const size_t magic_string_length = 6;
const char little_endian_char = '<';
const char big_endian_char = '>';
const char no_endian_char = '|';
constexpr std::array<char,3> endian_chars = { little_endian_char, big_endian_char, no_endian_char };
constexpr std::array<char,4> numtype_chars = { 'f', 'i', 'u', 'c' };
constexpr char host_endian_char = ( big_endian ?
big_endian_char :
little_endian_char );
/* npy array length */
typedef unsigned long int ndarray_len_t;
typedef std::pair<char,char> version_t;
struct dtype_t {
char byteorder;
char kind;
unsigned int itemsize;
// TODO: implement as constexpr
inline std::string str() const {
const size_t max_buflen = 16;
char buf[max_buflen];
std::sprintf(buf, "%c%c%u", byteorder, kind, itemsize);
return std::string(buf);
}
};
struct header_t {
dtype_t dtype;
bool fortran_order;
std::vector<ndarray_len_t> shape;
};
inline void write_magic(std::ostream& ostream, version_t version) {
ostream.write(magic_string, magic_string_length);
ostream.put(version.first);
ostream.put(version.second);
}
inline version_t read_magic(std::istream& istream) {
char buf[magic_string_length+2];
istream.read(buf, magic_string_length+2);
if(!istream) {
throw std::runtime_error("io error: failed reading file");
}
if (0 != std::memcmp(buf, magic_string, magic_string_length))
throw std::runtime_error("this file does not have a valid npy format.");
version_t version;
version.first = buf[magic_string_length];
version.second = buf[magic_string_length+1];
return version;
}
// typestring magic
template<typename T> struct has_typestring{
static const bool value=false;
};
template<> struct has_typestring<float>{
static const bool value=true;
static constexpr dtype_t dtype = {host_endian_char, 'f', sizeof(float)};
};
constexpr dtype_t has_typestring<float>::dtype;
template<> struct has_typestring<double>{
static const bool value=true;
static constexpr dtype_t dtype = {host_endian_char, 'f', sizeof(double)};
};
constexpr dtype_t has_typestring<double>::dtype;
template<> struct has_typestring<long double>{
static const bool value=true;
static constexpr dtype_t dtype = {host_endian_char, 'f', sizeof(long double)};
};
constexpr dtype_t has_typestring<long double>::dtype;
template<> struct has_typestring<char>{
static const bool value=true;
static constexpr dtype_t dtype = {no_endian_char, 'i', sizeof(char)};
};
constexpr dtype_t has_typestring<char>::dtype;
template<> struct has_typestring<short>{
static const bool value=true;
static constexpr dtype_t dtype = {host_endian_char, 'i', sizeof(short)};
};
constexpr dtype_t has_typestring<short>::dtype;
template<> struct has_typestring<int>{
static const bool value=true;
static constexpr dtype_t dtype = {host_endian_char, 'i', sizeof(int)};
};
constexpr dtype_t has_typestring<int>::dtype;
template<> struct has_typestring<long>{
static const bool value=true;
static constexpr dtype_t dtype = {host_endian_char, 'i', sizeof(long)};
};
constexpr dtype_t has_typestring<long>::dtype;
template<> struct has_typestring<long long>{
static const bool value=true;
static constexpr dtype_t dtype = {host_endian_char, 'i', sizeof(long long)};
};
constexpr dtype_t has_typestring<long long>::dtype;
template<> struct has_typestring<unsigned char>{
static const bool value=true;
static constexpr dtype_t dtype = {no_endian_char, 'u', sizeof(unsigned char)};
};
constexpr dtype_t has_typestring<unsigned char>::dtype;
template<> struct has_typestring<unsigned short>{
static const bool value=true;
static constexpr dtype_t dtype = {host_endian_char, 'u', sizeof(unsigned short)};
};
constexpr dtype_t has_typestring<unsigned short>::dtype;
template<> struct has_typestring<unsigned int>{
static const bool value=true;
static constexpr dtype_t dtype = {host_endian_char, 'u', sizeof(unsigned int)};
};
constexpr dtype_t has_typestring<unsigned int>::dtype;
template<> struct has_typestring<unsigned long>{
static const bool value=true;
static constexpr dtype_t dtype = {host_endian_char, 'u', sizeof(unsigned long)};
};
constexpr dtype_t has_typestring<unsigned long>::dtype;
template<> struct has_typestring<unsigned long long>{
static const bool value=true;
static constexpr dtype_t dtype = {host_endian_char, 'u', sizeof(unsigned long long)};
};
constexpr dtype_t has_typestring<unsigned long long>::dtype;
template<> struct has_typestring<std::complex<float>>{
static const bool value=true;
static constexpr dtype_t dtype = {host_endian_char, 'c', sizeof(std::complex<float>)};
};
constexpr dtype_t has_typestring<std::complex<float>>::dtype;
template<> struct has_typestring<std::complex<double>>{
static const bool value=true;
static constexpr dtype_t dtype = {host_endian_char, 'c', sizeof(std::complex<double>)};
};
constexpr dtype_t has_typestring<std::complex<double>>::dtype;
template<> struct has_typestring<std::complex<long double>>{
static const bool value=true;
static constexpr dtype_t dtype = {host_endian_char, 'c', sizeof(std::complex<long double>)};
};
constexpr dtype_t has_typestring<std::complex<long double>>::dtype;
// helpers
inline bool is_digits(const std::string &str) {
return std::all_of(str.begin(), str.end(), ::isdigit);
}
template <typename T, size_t N>
inline bool in_array(T val, const std::array<T,N> & arr) {
return std::find(std::begin(arr), std::end(arr), val) != std::end(arr);
}
inline dtype_t parse_descr(std::string typestring){
if ( typestring.length() < 3 ) {
throw std::runtime_error("invalid typestring (length)");
}
char byteorder_c = typestring.at(0);
char kind_c = typestring.at(1);
std::string itemsize_s = typestring.substr(2);
if (! in_array(byteorder_c, endian_chars)) {
throw std::runtime_error("invalid typestring (byteorder)");
}
if (! in_array(kind_c, numtype_chars)) {
throw std::runtime_error("invalid typestring (kind)");
}
if(! is_digits(itemsize_s)) {
throw std::runtime_error("invalid typestring (itemsize)");
}
unsigned int itemsize = std::stoul(itemsize_s);
return {byteorder_c, kind_c, itemsize};
}
namespace pyparse {
/**
Removes leading and trailing whitespaces
*/
inline std::string trim(const std::string& str) {
const std::string whitespace = " \t";
auto begin = str.find_first_not_of(whitespace);
if (begin == std::string::npos)
return "";
auto end = str.find_last_not_of(whitespace);
return str.substr(begin, end-begin+1);
}
inline std::string get_value_from_map(const std::string& mapstr) {
size_t sep_pos = mapstr.find_first_of(":");
if (sep_pos == std::string::npos)
return "";
std::string tmp = mapstr.substr(sep_pos+1);
return trim(tmp);
}
/**
Parses the string representation of a Python dict
The keys need to be known and may not appear anywhere else in the data.
*/
inline std::unordered_map<std::string, std::string> parse_dict(std::string in, std::vector<std::string>& keys) {
std::unordered_map<std::string, std::string> map;
if (keys.size() == 0)
return map;
in = trim(in);
// unwrap dictionary
if ((in.front() == '{') && (in.back() == '}'))
in = in.substr(1, in.length()-2);
else
throw std::runtime_error("Not a Python dictionary.");
std::vector<std::pair<size_t, std::string>> positions;
for (auto const& value : keys) {
size_t pos = in.find( "'" + value + "'" );
if (pos == std::string::npos)
throw std::runtime_error("Missing '"+value+"' key.");
std::pair<size_t, std::string> position_pair { pos, value };
positions.push_back(position_pair);
}
// sort by position in dict
std::sort(positions.begin(), positions.end() );
for(size_t i = 0; i < positions.size(); ++i) {
std::string raw_value;
size_t begin { positions[i].first };
size_t end { std::string::npos };
std::string key = positions[i].second;
if ( i+1 < positions.size() )
end = positions[i+1].first;
raw_value = in.substr(begin, end-begin);
raw_value = trim(raw_value);
if (raw_value.back() == ',')
raw_value.pop_back();
map[key] = get_value_from_map(raw_value);
}
return map;
}
/**
Parses the string representation of a Python boolean
*/
inline bool parse_bool(const std::string& in) {
if (in == "True")
return true;
if (in == "False")
return false;
throw std::runtime_error("Invalid python boolan.");
}
/**
Parses the string representation of a Python str
*/
inline std::string parse_str(const std::string& in) {
if ((in.front() == '\'') && (in.back() == '\''))
return in.substr(1, in.length()-2);
throw std::runtime_error("Invalid python string.");
}
/**
Parses the string represenatation of a Python tuple into a vector of its items
*/
inline std::vector<std::string> parse_tuple(std::string in) {
std::vector<std::string> v;
const char seperator = ',';
in = trim(in);
if ((in.front() == '(') && (in.back() == ')'))
in = in.substr(1, in.length()-2);
else
throw std::runtime_error("Invalid Python tuple.");
std::istringstream iss(in);
for (std::string token; std::getline(iss, token, seperator);) {
v.push_back(token);
}
return v;
}
template <typename T>
inline std::string write_tuple(const std::vector<T>& v) {
if (v.size() == 0)
return "";
std::ostringstream ss;
if (v.size() == 1) {
ss << "(" << v.front() << ",)";
} else {
const std::string delimiter = ", ";
// v.size() > 1
ss << "(";
std::copy(v.begin(), v.end()-1, std::ostream_iterator<T>(ss, delimiter.c_str()));
ss << v.back();
ss << ")";
}
return ss.str();
}
inline std::string write_boolean(bool b) {
if(b)
return "True";
else
return "False";
}
} // namespace pyparse
inline header_t parse_header(std::string header) {
/*
The first 6 bytes are a magic string: exactly "x93NUMPY".
The next 1 byte is an unsigned byte: the major version number of the file format, e.g. x01.
The next 1 byte is an unsigned byte: the minor version number of the file format, e.g. x00. Note: the version of the file format is not tied to the version of the numpy package.
The next 2 bytes form a little-endian unsigned short int: the length of the header data HEADER_LEN.
The next HEADER_LEN bytes form the header data describing the array's format. It is an ASCII string which contains a Python literal expression of a dictionary. It is terminated by a newline ('n') and padded with spaces ('x20') to make the total length of the magic string + 4 + HEADER_LEN be evenly divisible by 16 for alignment purposes.
The dictionary contains three keys:
"descr" : dtype.descr
An object that can be passed as an argument to the numpy.dtype() constructor to create the array's dtype.
"fortran_order" : bool
Whether the array data is Fortran-contiguous or not. Since Fortran-contiguous arrays are a common form of non-C-contiguity, we allow them to be written directly to disk for efficiency.
"shape" : tuple of int
The shape of the array.
For repeatability and readability, this dictionary is formatted using pprint.pformat() so the keys are in alphabetic order.
*/
// remove trailing newline
if (header.back() != '\n')
throw std::runtime_error("invalid header");
header.pop_back();
// parse the dictionary
std::vector<std::string> keys { "descr", "fortran_order", "shape" };
auto dict_map = npy::pyparse::parse_dict(header, keys);
if (dict_map.size() == 0)
throw std::runtime_error("invalid dictionary in header");
std::string descr_s = dict_map["descr"];
std::string fortran_s = dict_map["fortran_order"];
std::string shape_s = dict_map["shape"];
std::string descr = npy::pyparse::parse_str(descr_s);
dtype_t dtype = parse_descr(descr);
// convert literal Python bool to C++ bool
bool fortran_order = npy::pyparse::parse_bool(fortran_s);
// parse the shape tuple
auto shape_v = npy::pyparse::parse_tuple(shape_s);
if (shape_v.size() == 0)
throw std::runtime_error("invalid shape tuple in header");
std::vector<ndarray_len_t> shape;
for ( auto item : shape_v ) {
ndarray_len_t dim = static_cast<ndarray_len_t>(std::stoul(item));
shape.push_back(dim);
}
return {dtype, fortran_order, shape};
}
inline std::string write_header_dict(const std::string& descr, bool fortran_order, const std::vector<ndarray_len_t>& shape) {
std::string s_fortran_order = npy::pyparse::write_boolean(fortran_order);
std::string shape_s = npy::pyparse::write_tuple(shape);
return "{'descr': '" + descr + "', 'fortran_order': " + s_fortran_order + ", 'shape': " + shape_s + ", }";
}
inline void write_header(std::ostream& out, const header_t& header)
{
std::string header_dict = write_header_dict(header.dtype.str(), header.fortran_order, header.shape);
size_t length = magic_string_length + 2 + 2 + header_dict.length() + 1;
version_t version {1, 0};
if (length >= 255*255) {
length = magic_string_length + 2 + 4 + header_dict.length() + 1;
version = {2, 0};
}
size_t padding_len = 16 - length % 16;
std::string padding (padding_len, ' ');
// write magic
write_magic(out, version);
// write header length
if (version == version_t{1, 0} ) {
char header_len_le16[2];
uint16_t header_len = static_cast<uint16_t>(header_dict.length() + padding.length() + 1);
header_len_le16[0] = (header_len >> 0) & 0xff;
header_len_le16[1] = (header_len >> 8) & 0xff;
out.write(reinterpret_cast<char *>(header_len_le16), 2);
}else{
char header_len_le32[4];
uint32_t header_len = static_cast<uint32_t>(header_dict.length() + padding.length() + 1);
header_len_le32[0] = (header_len >> 0) & 0xff;
header_len_le32[1] = (header_len >> 8) & 0xff;
header_len_le32[2] = (header_len >> 16) & 0xff;
header_len_le32[3] = (header_len >> 24) & 0xff;
out.write(reinterpret_cast<char *>(header_len_le32), 4);
}
out << header_dict << padding << '\n';
}
inline std::string read_header(std::istream& istream) {
// check magic bytes an version number
version_t version = read_magic(istream);
uint32_t header_length;
if( version == version_t{1, 0}){
char header_len_le16[2];
istream.read(header_len_le16, 2);
header_length = (header_len_le16[0] << 0) | (header_len_le16[1] << 8);
if((magic_string_length + 2 + 2 + header_length) % 16 != 0) {
// TODO: display warning
}
}else if( version == version_t{2, 0}) {
char header_len_le32[4];
istream.read(header_len_le32, 4);
header_length = (header_len_le32[0] << 0) | (header_len_le32[1] << 8)
| (header_len_le32[2] << 16) | (header_len_le32[3] << 24);
if((magic_string_length + 2 + 4 + header_length) % 16 != 0) {
// TODO: display warning
}
}else{
throw std::runtime_error("unsupported file format version");
}
auto buf_v = std::vector<char>();
buf_v.reserve(header_length);
istream.read(buf_v.data(), header_length);
std::string header(buf_v.data(), header_length);
return header;
}
inline ndarray_len_t comp_size(const std::vector<ndarray_len_t>& shape) {
ndarray_len_t size = 1;
for (ndarray_len_t i : shape )
size *= i;
return size;
}
template<typename Scalar>
inline void SaveArrayAsNumpy( const std::string& filename, bool fortran_order, unsigned int n_dims, const unsigned long shape[], const std::vector<Scalar>& data)
{
static_assert(has_typestring<Scalar>::value, "scalar type not understood");
dtype_t dtype = has_typestring<Scalar>::dtype;
std::ofstream stream( filename, std::ofstream::binary);
if(!stream) {
throw std::runtime_error("io error: failed to open a file.");
}
std::vector<ndarray_len_t> shape_v(shape, shape+n_dims);
header_t header {dtype, fortran_order, shape_v};
write_header(stream, header);
auto size = static_cast<size_t>(comp_size(shape_v));
stream.write(reinterpret_cast<const char*>(data.data()), sizeof(Scalar) * size);
}
template<typename Scalar>
inline void LoadArrayFromNumpy(const std::string& filename, std::vector<unsigned long>& shape, std::vector<Scalar>& data)
{
bool fortran_order;
LoadArrayFromNumpy<Scalar>(filename, shape, fortran_order, data);
}
template<typename Scalar>
inline void LoadArrayFromNumpy(const std::string& filename, std::vector<unsigned long>& shape, bool& fortran_order, std::vector<Scalar>& data)
{
std::ifstream stream(filename, std::ifstream::binary);
if(!stream) {
throw std::runtime_error("io error: failed to open a file.");
}
std::string header_s = read_header(stream);
// parse header
header_t header = parse_header(header_s);
// check if the typestring matches the given one
static_assert(has_typestring<Scalar>::value, "scalar type not understood");
std::string expect_descr = has_typestring<Scalar>::dtype.str();
// TODO: implement != and == for dtype_t
if (header.dtype.str() != expect_descr) {
throw std::runtime_error("formatting error: typestrings not matching");
}
shape = header.shape;
fortran_order = header.fortran_order;
// compute the data size based on the shape
auto size = static_cast<size_t>(comp_size(shape));
data.resize(size);
// read the data
stream.read(reinterpret_cast<char*>(data.data()), sizeof(Scalar)*size);
}
} // namespace npy
#endif // NPY_H