-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun-ssd.cc
183 lines (170 loc) · 6.13 KB
/
run-ssd.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
#include <chrono>
#include <iostream>
#include "npy.hpp"
#include "tensorflow/lite/kernels/register.h"
// how to build and run this programm is described here
// https://gist.github.com/apivovarov/ed359c2044f705a1b9b578df8a80c326
std::string getShape(TfLiteTensor* t) {
std::string s = "(";
int sz = t->dims->size;
for (int i = 0; i < sz; i++) {
if (i > 0) {
s += ",";
}
s += std::to_string(t->dims->data[i]);
}
s += ")";
return s;
}
int main(int argc, char* argv[]) {
if (argc != 4) {
printf("%s <model.tflite> <npy_file> <n_threads>\n", argv[0]);
return -1;
}
char* graph_path = argv[1];
char* npy_path = argv[2];
int num_threads = std::stoi(argv[3]);
printf("Model: %s\n", graph_path);
printf("npy: %s\n", npy_path);
// std::cout << graph_path << std::endl;
std::unique_ptr<tflite::FlatBufferModel> model(
tflite::FlatBufferModel::BuildFromFile(graph_path));
if (!model) {
printf("Failed to mmap model\n");
exit(1);
}
printf("Model is built\n");
tflite::ops::builtin::BuiltinOpResolver resolver;
std::unique_ptr<tflite::Interpreter> interpreter;
tflite::InterpreterBuilder(*model, resolver)(&interpreter);
if (!interpreter) {
printf("Failed to construct interpreter\n");
exit(1);
}
printf("Interpreter is constructed\n");
// interpreter->UseNNAPI(false);
if (num_threads > 0) {
interpreter->SetNumThreads(num_threads);
printf("SetNumThreads: %d\n", num_threads);
}
// Get Input and Output tensors info
int in_id = interpreter->inputs()[0];
TfLiteTensor* in_tensor = interpreter->tensor(in_id);
auto in_type = in_tensor->type;
auto in_shape = getShape(in_tensor).c_str();
auto in_name = in_tensor->name;
printf("Input Tensor id, name, type, shape: %i, %s, %s(%d), %s\n", in_id,
in_name, TfLiteTypeGetName(in_type), in_type, in_shape);
int out_sz = interpreter->outputs().size();
std::cout << "Output Tensor id, name, type, shape:" << std::endl;
for (int i = 0; i < out_sz; i++) {
auto t_id = interpreter->outputs()[i];
TfLiteTensor* t = interpreter->tensor(t_id);
auto t_type = t->type;
printf(" %i, %s, %s(%d), %s\n", t_id, t->name, TfLiteTypeGetName(t_type),
t_type, getShape(t).c_str());
}
int dim_h = in_tensor->dims->data[1];
int dim_w = in_tensor->dims->data[2];
// end of Input and Output tensors info
if (interpreter->AllocateTensors() != kTfLiteOk) {
printf("Failed to allocate tensors\n");
exit(1);
}
printf("AllocateTensors Ok\n");
int sz = dim_h * dim_w * 3;
std::vector<unsigned long> in_shape_ul;
std::vector<float> img;
std::vector<unsigned char> img_uint8;
bool fortran_order;
if (in_type == 3) {
npy::LoadArrayFromNumpy(npy_path, in_shape_ul, fortran_order, img_uint8);
} else {
npy::LoadArrayFromNumpy(npy_path, in_shape_ul, fortran_order, img);
}
printf("Image read ok, size: %d\n", sz);
const int N = 100;
int total_time = 0;
for (int j = -1; j < N; j++) {
float* in_data;
unsigned char* in_data_uint8;
if (in_type == 3) {
in_data_uint8 = interpreter->typed_input_tensor<unsigned char>(0);
} else {
in_data = interpreter->typed_input_tensor<float>(0);
}
// Set input
auto t1 = std::chrono::high_resolution_clock::now();
if (in_type == 3) {
memcpy(in_data_uint8, img_uint8.data(), sz * sizeof(unsigned char));
} else {
memcpy(in_data, img.data(), sz * sizeof(float));
}
// Invoke
if (interpreter->Invoke() != kTfLiteOk) {
std::printf("Failed to invoke!\n");
exit(1);
}
// Get output
if (out_sz == 4) { // post-processed output
auto t_type = interpreter->tensor(interpreter->outputs()[0])->type;
if (t_type == 1) { // float32
float* output0 = interpreter->typed_output_tensor<float>(0);
float* output1 = interpreter->typed_output_tensor<float>(1);
float* output2 = interpreter->typed_output_tensor<float>(2);
float* output3 = interpreter->typed_output_tensor<float>(3);
int n = (int)(output3[0]);
printf("num_of_objects: %d\n", n);
for (int i = 0; i < n; i++) {
printf("%d: ", i);
printf("class: %d", (int)output1[i]);
printf(", score: %f", output2[i]);
printf(", box: %f, %f, %f, %f\n", output0[i * 4 + 0],
output0[i * 4 + 1], output0[i * 4 + 2], output0[i * 4 + 3]);
}
} else if (t_type == 3) { // uint8
unsigned char* output0 =
interpreter->typed_output_tensor<unsigned char>(0);
unsigned char* output1 =
interpreter->typed_output_tensor<unsigned char>(1);
unsigned char* output2 =
interpreter->typed_output_tensor<unsigned char>(2);
unsigned char* output3 =
interpreter->typed_output_tensor<unsigned char>(3);
int n = (int)(output3[0]);
printf("num_of_objects: %d\n", n);
for (int i = 0; i < n; i++) {
printf("%d: ", i);
printf("class: %d", output1[i]);
printf(", score: %d", output2[i]);
printf(", box: %d, %d, %d, %d\n", output0[i * 4 + 0],
output0[i * 4 + 1], output0[i * 4 + 2], output0[i * 4 + 3]);
}
}
} else { // raw output
for (int i = 0; i < out_sz; i++) {
auto t_type = interpreter->tensor(interpreter->outputs()[i])->type;
if (t_type == 1) { // float32
float* output = interpreter->typed_output_tensor<float>(i);
printf("output[%d][0]: %f\n", i, output[0]);
} else if (t_type == 2) { // int32
int* output = interpreter->typed_output_tensor<int>(i);
printf("output[%d][0]: %d\n", i, output[0]);
} else if (t_type == 3) { // uint8
unsigned char* output =
interpreter->typed_output_tensor<unsigned char>(i);
printf("output[%d][0]: %d\n", i, output[0]);
}
}
}
auto t2 = std::chrono::high_resolution_clock::now();
auto dur =
std::chrono::duration_cast<std::chrono::milliseconds>(t2 - t1).count();
if (j >= 0) {
total_time += dur;
printf("time: %ld\n", dur);
}
}
printf("Avg time: %f\n", total_time * 1.0 / N);
return 0;
}