-
Notifications
You must be signed in to change notification settings - Fork 0
/
materials.py
311 lines (249 loc) · 9.6 KB
/
materials.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import scipy.constants as const
from numpy import sqrt, exp
"""
This file contains hard-coded material objects, which provide the input constants for transport calculations.
NOTE: Everything is stored in S.I. units.
"""
class Material(object):
"""
Template for the material object; see instances below
"""
DEFAULT_NUM = 0 # for numbering unnamed materials
def __init__(self):
# a name for the material
self.name = None
# basic valence band description
# ------------------------------
self.mh_DOS = None # [kg] DOS effective mass of holes
self.kappa_bulk = None # [W/m/K] bulk thermal conductivity
# parameters from TABLE 1. in Rode #3
# -----------------------------------
self.me0 = None # [kg] Gamma valley effective mass
self.Eg0 = None # [J] effective mass energy gap at 0 K
self.slope_Eg0 = None # [J/K] energy-gap temperature coefficient
self.eps_lo = None # [epsilon_0] low-frequency dielectric permittivity
self.eps_hi = None # [epsilon_0] high-frequency dielectric permittivity
self.Tpo = None # [K] polar-phonon Debye temperature
self.E1 = None # [J] acoustic-deformation potential
self.cl = None # [N/m^2] longitudinal elastic constant
self.ct = None # [N/m^2] transverse elastic constant
self.Pz = None # [1] piezoelectric coefficient
# Kane band parameters (from Vurgaftman)
# --------------------------------------
self.Ep = None # used to calculate `Psq`
self.Eso = None # [J] spin-orbit splitting energy
self.F = None # [1] a band parameter
# Varshni parameters for Eg(T) (from Vurgaftman)
# ----------------------------------------------
self.Varshni_alpha = None # [J/K]
self.Varshni_beta = None # [K]
# calculated parameters (not needed to create material)
# -----------------------------------------------------
self.wpo = None # [Hz] polar-optical phonon frequency
# flags
# -----
self.meG_expression = 'Vurgaftman' # specifies equation used for effective mass temperature-dependence
self.Eg_expression = 'Vurgaftman' # specifies equation used for Band gap temperature-dependence
def __str__(self):
return "<materials.Material object: '{}'>".format(self.name)
def modified(self, **kwargs):
"""
Return an instance of the material with some modified parameters
"""
for key, value in kwargs.items():
if hasattr(self, key):
self.__setattr__(key, value)
else:
raise ValueError("{} has not attribute {}"
.format(self, key))
return self
@classmethod
def create(cls, **params):
"""
Create an instance of Material by supplying the necessary parameters
"""
mat = cls()
# copy over parameters from input dictionary
if 'name' not in params:
mat.name = 'Unnamed' + str(Material.DEFAULT_NUM)
Material.DEFAULT_NUM += 1
for key, value in params.items():
if hasattr(mat, key):
mat.__setattr__(key, value)
else:
print("unrecognized parameter '{}' = `{}` for material '{}'"
.format(key, value, mat.name))
# print which (if any) are left blank
for key, value in mat.__dict__.items():
if value is None and key != 'wpo':
print("parameter `{}` is `None` for material '{}'".format(key, mat.name))
# calculate parameters not provided directly
mat.wpo = const.k * mat.Tpo / const.hbar
# set this to zero if wasn't provided so things don't break
if mat.mh_DOS is None:
mat.mh_DOS = 0.
return mat
def get_meG(self, T):
"""
Temperature-dependent Gamma-valley electron effective mass;
NOTE: I am not quite sure what Rode's '𝒫' parameter is in Eqs. (33) and (35).
'𝒫'-squared should have units of energy, which leads me to believe it's
the same as 'Ep' defined in Vurgaftman (2001) Eq. (2.4).
The default effective mass expression will therefore be the more modern:
Vurgaftman (2001) Eq. (2.15)
"""
if self.meG_expression == 'Vurgaftman':
Eg = self.get_Eg(T)
Ep = self.Ep
Eso = self.Eso
F = self.F
return const.m_e / ((1. + 2. * F) + Ep * (Eg + 2. * Eso / 3.) / Eg / (Eg + Eso))
elif self.meG_expression == '33':
# Use Rode #3, Eq. (33)
Eg = self.get_Eg(T)
return const.m_e / (1. + self.Ep / Eg)
elif self.meG_expression == '35':
# Use Rode #3, Eq. (35)
Eg = self.get_Eg(T)
return const.m_e / (1. + 1 / 3 * self.Ep * (2. / Eg + 1. / (Eg + self.Eso)))
else:
raise ValueError("unrecognized or invalid `meG_expression` '{}'"
.format(self.meG_expression))
def get_Eg(self, T):
"""
Temperature-dependent effective mass band gap;
Rode #3, equation (34)
"""
if self.Eg_expression in ['Vurgaftman', 'Varshni']:
a = self.Varshni_alpha
b = self.Varshni_beta
return self.Eg0 - a * T**2 / (T + b)
elif self.Eg_expression == '34':
# Use Rode #3, Eq. (34)
return self.Eg0 - self.slope_Eg0 * T
else:
raise ValueError("unrecognized or invalid `Eg_expression` '{}'"
.format(self.Eg_expression))
# INSTANCES REPRESENTING MATERIAL MODELS
# --------------------------------------
InSb = Material.create(
name='InSb',
mh_DOS=0.43 * const.m_e, # http://www.ioffe.ru/SVA/NSM/Semicond/InSb/bandstr.html
kappa_bulk=18.,
me0=0.0155 * const.m_e,
Eg0=0.265 * const.e,
slope_Eg0=0.97 * const.e * 1e-4,
eps_lo=17.64 * const.epsilon_0,
eps_hi=15.75 * const.epsilon_0,
Tpo=274.,
E1=9.5 * const.e,
cl=7.89 * 1e10,
ct=2.42 * 1e10,
Pz=0.027, # Rode (1975)
Varshni_alpha=0.32 * 1e-3 * const.e,
Varshni_beta=170,
Ep=23.3 * const.e,
Eso=0.81 * const.e,
F=-0.23
)
InAs = Material.create(
name='InAs',
mh_DOS=0.41 * const.m_e, # http://www.ioffe.ru/SVA/NSM/Semicond/InAs/bandstr.html
kappa_bulk=27.,
me0=0.025 * const.m_e,
Eg0=0.46 * const.e,
slope_Eg0=0.69 * const.e * 1e-4,
eps_lo=14.54 * const.epsilon_0,
eps_hi=12.25 * const.epsilon_0,
Tpo=337.,
E1=11.5 * const.e,
cl=9.98 * 1e10,
ct=3.14 * 1e10,
Pz=0.017, # Rode (1975)
Varshni_alpha=0.276 * 1e-3 * const.e,
Varshni_beta=93,
Eso=0.39 * const.e,
Ep=21.5 * const.e,
F=-2.90
)
InP = Material.create(
name='InP',
mh_DOS=0.6 * const.m_e, # http://www.ioffe.ru/SVA/NSM/Semicond/InP/bandstr.html
kappa_bulk=68.,
me0=0.072 * const.m_e,
Eg0=1.42 * const.e,
slope_Eg0=0.41 * const.e * 1e-4,
eps_lo=12.38 * const.epsilon_0,
eps_hi=9.55 * const.epsilon_0,
Tpo=497.,
E1=14.5 * const.e,
cl=12.10 * 1e10,
ct=3.65 * 1e10,
Pz=0.013, # Rode (1975)
Varshni_alpha=0.363 * 1e-3 * const.e,
Varshni_beta=162,
Eso=0.11 * const.e, # Given in Rode #3 pg. 3296; Vurgaftman's value is `0.108` [eV]
Ep=20.7 * const.e,
F=-1.31
)
GaAs = Material.create(
# there parameters are from Rode #1, Rode (1975), and Vurgaftman (2001)
name='GaAs',
mh_DOS=0.53 * const.m_e, # http://www.ioffe.ru/SVA/NSM/Semicond/GaAs/bandstr.html
kappa_bulk=55.,
me0=0.0655 * const.m_e,
Eg0=1.58 * const.e,
slope_Eg0=1.2 * const.e * 1e-4,
eps_lo=12.90 * const.epsilon_0,
eps_hi=10.92 * const.epsilon_0,
Tpo=420.,
E1=8.6 * const.e, # Rode (1975)
cl=14.0 * 1e10, # Rode (1975)
ct=4.89 * 1e10, # Rode (1975)
Pz=0.052, # Rode (1975)
Varshni_alpha=0.5405 * 1e-3 * const.e,
Varshni_beta=204,
Eso=0.341 * const.e, # Vurgaftman (2001)
Ep=28.8 * const.e, # Vurgaftman (2001)
F=-1.94 # Vurgaftman (2001)
)
# BULK INTRINSIC CARRIER CONCENTRATIONS FROM LITERATURE
# ------------------------------------------------
# although there is a `calculate_Ei` method in `RodeSolver`,
# these are for replicating Rode's results as closely as possible
def ni_InSb_Hrostowski(T):
"""
intrinsic carrier concentration of InSb above 200 K;
taken from Rode #3 Ref 33:
Hrostowski, H. J., et al. "Hall effect and conductivity of InSb."
Physical Review 100.6 (1955): 1672.
"""
return sqrt(
3.6e29 * T**3 * exp(-0.26 * const.e / const.k / T)
) * 1e6 # [m^-3]
def ni_InAs_Folberth(T):
"""
intrinsic carrier concentration of InAs;
taken from Rode #3, Ref 48:
Folberth, O. G., O. Madelung, and H. Weiss.
"Die elektrischen Eigenschaften von Indiumarsenid II."
Zeitschrift für Naturforschung A 9.11 (1954): 954-958.
"""
alpha = -4.5e-4 # band gap temperature coefficient [ev/K]
Eg = (0.47 + alpha * T) * const.e # [J] band gap
m_eff = 0.10 # [1] effective mass
return sqrt(
2.4e31 * T**3 * m_eff**3 * exp(-Eg / const.k / T)
) * 1e6 # [m^-3]
def ni_InP_Folberth(T):
"""
intrinsic carrier concentration of InP;
taken from Rode #3, Ref 65
Folberth, O. G., and H. Weiss.
"Herstellung und elektrische Eigenschaften von InP und GaAs."
Zeitschrift für Naturforschung A 10.8 (1955): 615-619.
"""
Eg = 1.34 * const.e
return sqrt(
7.e31 * T**3 * exp(-Eg / const.k / T)
) * 1e6 # [m^-3]