-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_ssl.py
133 lines (121 loc) · 4.3 KB
/
train_ssl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
from model import network
import datasets_ws
import commons
import parser
import test
import util
import math
import torch
import logging
import numpy as np
from tqdm import tqdm
import torch.nn as nn
import multiprocessing
from os.path import join, isdir
from datetime import datetime
import torchvision.transforms as transforms
from torch.utils.data.dataloader import DataLoader
import pytorch_lightning as pl
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.callbacks import RichProgressBar, ModelCheckpoint, LearningRateMonitor
from uuid import uuid4
import os
def main():
# Initial setup: parser, logging...
args = parser.parse_arguments()
start_time = datetime.now()
args.save_dir = join(
"logs",
args.save_dir,
f"{args.dataset_name}-{start_time.strftime('%Y-%m-%d_%H-%M-%S')}-{uuid4()}",
)
commons.setup_logging(args.save_dir)
commons.make_deterministic(args.seed)
logging.info(f"Arguments: {args}")
wandb_logger = WandbLogger(project="vg-ssl", entity="vg-ssl")
if args.pair_negative and args.neg_samples_num > 0:
args.train_batch_size = args.train_batch_size // 2
logging.info("Pair negative is enable. The actual batch size is train_batch_size//2")
logging.info(f"The outputs are being saved in {args.save_dir}")
logging.info(
f"Using {torch.cuda.device_count()} GPUs and {multiprocessing.cpu_count()} CPUs"
)
# Creation of Datasets
logging.debug(
f"Loading dataset {args.dataset_name} from folder {args.datasets_folder}")
train_ds = None
if args.method == 'pair':
train_ds = datasets_ws.PairsDataset(
args, args.datasets_folder, args.dataset_name, "train"
)
else:
raise NotImplementedError('Unknown method is used')
logging.info(f"Train query set: {train_ds}")
val_ds = datasets_ws.BaseDataset(
args, args.datasets_folder, args.dataset_name, "val")
logging.info(f"Val set: {val_ds}")
test_ds = datasets_ws.BaseDataset(
args, args.datasets_folder, args.dataset_name, "test")
logging.info(f"Test set: {test_ds}")
try:
args.num_nodes = int(os.environ["SLURM_JOB_NUM_NODES"])
args.num_devices = int(os.environ["SLURM_NTASKS_PER_NODE"])
except:
if args.visualize_input:
args.num_nodes = 1
args.num_devices = 1
else:
args.num_nodes = 1
args.num_devices = torch.cuda.device_count()
# Initialize model
model = network.SSLGeoLocalizationNet(args, [train_ds, val_ds, test_ds])
checkpoint_callback = ModelCheckpoint(
monitor="val_recall5",
dirpath=args.save_dir,
filename="best_model",
save_last=True,
mode="max",
verbose=True)
checkpoint_callback.CHECKPOINT_NAME_LAST = "last_model"
checkpoint_callback.FILE_EXTENSION = ".pth"
bar = RichProgressBar()
lrmoniter = LearningRateMonitor(logging_interval = "step")
# Resume model, optimizer, and other training parameters
if args.resume:
if args.aggregation != "crn":
(
model,
_,
best_r5,
start_epoch_num,
not_improved_num,
) = util.resume_train_ssl(args, model)
else:
# CRN uses pretrained NetVLAD, then requires loading with strict=False and
# does not load the optimizer from the checkpoint file.
model, _, best_r5, start_epoch_num, not_improved_num = util.resume_train_ssl(
args, model, strict=False
)
logging.info(
f"Resuming from epoch {start_epoch_num} with best recall@5 {best_r5:.1f}"
)
else:
best_r5 = start_epoch_num = not_improved_num = 0
trainer = pl.Trainer(
accelerator = "gpu",
num_nodes = args.num_nodes,
devices = args.num_devices,
max_epochs = args.epochs_num,
sync_batchnorm = True,
logger = wandb_logger,
callbacks = [checkpoint_callback, bar, lrmoniter],
check_val_every_n_epoch = 10,
num_sanity_val_steps = 0
)
# logging.debug(model)
if trainer.is_global_zero:
wandb_logger.experiment.config.update(vars(args))
# trainer.validate(model)
trainer.fit(model)
if __name__ == "__main__":
main()