-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathh5_transformer.py
253 lines (236 loc) · 12.8 KB
/
h5_transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import h5py
import numpy as np
import os
import shutil
from PIL import Image
import argparse
from tqdm import tqdm
import yaml
from glob import glob
folder_config_path = './folder_config.yml'
datasets_folder = './datasets/'
Image.MAX_IMAGE_PIXELS = None
def calc_overlap(database_region, query_region):
valid_region = []
valid_region.append(max(database_region[0], query_region[0])) # top
valid_region.append(max(database_region[1], query_region[1])) # left
valid_region.append(min(database_region[2], query_region[2])) # bottom
valid_region.append(min(database_region[3], query_region[3])) # right
# Check if the region is valid
if valid_region[2]<=valid_region[0] or valid_region[3]<=valid_region[1]:
raise ValueError('The area of valid region is less or equal to zero.')
print("Get valid region: " + str(valid_region))
return valid_region
def create_h5_file(args, name, split, sample_num):
# Check input
if not name in ['database', 'queries']:
raise NotImplementedError('Name must be database or queries')
if not split in ['train', 'val', 'test']:
raise NotImplementedError('Split must be train or val or test')
# Load yaml
with open(folder_config_path, 'r') as f:
folder_config = yaml.safe_load(f)
# Check name
if name == 'database':
image = np.array(Image.open(os.path.join(
datasets_folder, folder_config[args.database_name]['name'], folder_config[args.database_name]['maps'][args.database_index])).convert('RGB'))
save_path = os.path.join(datasets_folder, args.database_name + '_' + str(args.database_index) + '_' + args.queries_name + '_' + str(args.queries_index), f'{split}_database.h5')
else:
image = np.array(Image.open(os.path.join(
datasets_folder, folder_config[args.queries_name]['name'], folder_config[args.queries_name]['maps'][args.queries_index])).convert('RGB'))
save_path = os.path.join(datasets_folder, args.database_name + '_' + str(args.database_index) + '_' + args.queries_name + '_' + str(args.queries_index), f'{split}_queries.h5')
if os.path.isfile(save_path):
os.remove(save_path)
# Check valid region
database_region = folder_config[args.database_name]['valid_regions'][args.database_index]
queries_region = folder_config[args.queries_name]['valid_regions'][args.queries_index]
valid_region = calc_overlap(database_region, queries_region)
# database region must be overlap with queries region
if args.region_num == 2:
# train at left half and val at right half
if split == 'train':
database_queries_region = [valid_region[0] + args.crop_width//2,
valid_region[1] + args.crop_width//2,
valid_region[2] - args.crop_width//2,
(valid_region[1] + valid_region[3])//2 - args.crop_width//2] # top, left, bottom, right
print(f'Train region: {database_queries_region}')
elif split == 'val':
database_queries_region = [valid_region[0] + args.crop_width//2,
(valid_region[1] + valid_region[3])//2 + args.crop_width//2,
valid_region[2] - args.crop_width//2,
valid_region[3] - args.crop_width//2] # top, left, bottom, right
print(f'Val region: {database_queries_region}')
else:
raise ValueError('Generate test option is false. Please add --generate_test to generate test set.')
elif args.region_num == 3:
# Easy: train at 0 - 4500, val at 4500 - 5500, test at 5500 - for thermal
# Hard: train at 0 - 3000, val at 3000 - 5000, test at 5000 - for thermal
TRAIN_X_OFFSET = 3000
VAL_X_OFFSET = 5000
if split == 'train':
database_queries_region = [valid_region[0] + args.crop_width//2,
valid_region[1] + args.crop_width//2,
valid_region[2] - args.crop_width//2,
valid_region[1] + TRAIN_X_OFFSET - args.crop_width//2] # top, left, bottom, right
print(f'Train region: {database_queries_region}')
elif split == 'val':
database_queries_region = [valid_region[0] + args.crop_width//2,
valid_region[1] + TRAIN_X_OFFSET + args.crop_width//2,
valid_region[2] - args.crop_width//2,
valid_region[1] + VAL_X_OFFSET - args.crop_width//2] # top, left, bottom, right
print(f'Val region: {database_queries_region}')
else:
database_queries_region = [valid_region[0] + args.crop_width//2,
valid_region[1] + VAL_X_OFFSET + args.crop_width//2,
valid_region[2] - args.crop_width//2,
valid_region[3] - args.crop_width//2] # top, left, bottom, right
print(f'Test region: {database_queries_region}')
else:
# train, val and test at the entire region
database_queries_region = [valid_region[0] + args.crop_width//2,
valid_region[1] + args.crop_width//2,
valid_region[2] - args.crop_width//2,
valid_region[3] - args.crop_width//2] # top, left, bottom, right
if split == 'train':
print(f'Train region: {database_queries_region}')
elif split == 'val':
print(f'Val region: {database_queries_region}')
else:
print(f'Test region: {database_queries_region}')
# Write h5
with h5py.File(save_path, "a") as hf:
start = False
img_names = []
if args.sample_method == 'random':
cood_y = np.random.randint(
database_queries_region[0], database_queries_region[2], size=sample_num)
cood_x = np.random.randint(
database_queries_region[1], database_queries_region[3], size=sample_num)
elif args.sample_method == 'grid':
cood_y_only = np.linspace(
database_queries_region[0], database_queries_region[2], size=round(np.sqrt(sample_num)))
cood_x_only = np.linspace(
database_queries_region[1], database_queries_region[3], size=round(np.sqrt(sample_num)))
cood_x, cood_y = np.meshgrid(cood_x_only, cood_y_only)
cood_y = cood_y.flatten()
cood_x = cood_x.flatten()
elif args.sample_method == 'stride':
print("Warning: Stride sampling overrides sample num. You may get less or more samples.")
cood_y_only = np.arange(
database_queries_region[0], database_queries_region[2], step=args.stride)
cood_x_only = np.arange(
database_queries_region[1], database_queries_region[3], step=args.stride)
cood_x, cood_y = np.meshgrid(cood_x_only, cood_y_only)
cood_y = cood_y.flatten()
cood_x = cood_x.flatten()
else:
raise NotImplementedError()
for i in tqdm(range(len(cood_y))):
name = f'@{cood_y[i]}@{cood_x[i]}'
img_names.append(name)
img_np = image[cood_y[i]-args.crop_width//2: cood_y[i]+args.crop_width //
2, cood_x[i]-args.crop_width//2: cood_x[i]+args.crop_width//2, :]
img_np = np.expand_dims(img_np, axis=0)
size_np = np.expand_dims(
np.array([img_np.shape[1], img_np.shape[2]]), axis=0)
if not start:
if args.compress:
hf.create_dataset(
"image_data",
data=img_np,
chunks=(1, 512, 512, 3),
maxshape=(None, 512, 512, 3),
compression="lzf",
) # write the data to hdf5 file
hf.create_dataset(
"image_size",
data=size_np,
chunks=True,
maxshape=(None, 2),
compression="lzf",
)
else:
hf.create_dataset(
"image_data",
data=img_np,
chunks=(1, 512, 512, 3),
maxshape=(None, 512, 512, 3),
) # write the data to hdf5 file
hf.create_dataset(
"image_size", data=size_np, chunks=True, maxshape=(None, 2)
)
start = True
else:
hf["image_data"].resize(
hf["image_data"].shape[0] + img_np.shape[0], axis=0
)
hf["image_data"][-img_np.shape[0]:] = img_np
hf["image_size"].resize(
hf["image_size"].shape[0] + size_np.shape[0], axis=0
)
hf["image_size"][-size_np.shape[0]:] = size_np
t = h5py.string_dtype(encoding="utf-8")
if args.compress:
hf.create_dataset("image_name", data=img_names,
dtype=t, compression="lzf")
else:
hf.create_dataset("image_name", data=img_names, dtype=t)
print("hdf5 file size: %d bytes" % os.path.getsize(save_path))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--database_name",
type=str,
choices=['satellite', 'sirmionemapping',
'thermalmapping', 'foxtechmapping', 'ADASI', 'ADASI_thermal'],
help="The name of database map you want to use"
)
parser.add_argument(
"--database_index",
type=int,
help="The index of database flight you want to use. For satellite map, 0 is bing."
)
parser.add_argument(
"--queries_name",
type=str,
choices=['satellite', 'sirmionemapping',
'thermalmapping', 'foxtechmapping', 'ADASI', 'ADASI_thermal'],
help="The name of queries map you want to use"
)
parser.add_argument(
"--queries_index",
type=int,
help="The index of queries flight you want to use. For satellite map, it is forced to be 0"
)
parser.add_argument("--crop_width", type=int, default=512)
parser.add_argument("--train_sample_num", type=int, default=10000)
parser.add_argument("--val_sample_num", type=int, default=10000)
parser.add_argument("--compress", action="store_true")
parser.add_argument("--region_num", type=int, default=2, choices=[1, 2, 3])
parser.add_argument("--sample_method", type=str, default="random", choices=["random", "grid", "stride"])
parser.add_argument("--stride", type=int, default=35)
args = parser.parse_args()
if os.path.isdir(os.path.join(datasets_folder, args.database_name + '_' + str(args.database_index) + '_' + args.queries_name + '_' + str(args.queries_index))):
rmpaths = glob(os.path.join(datasets_folder, args.database_name + '_' + str(
args.database_index) + '_' + args.queries_name + '_' + str(args.queries_index), '*'))
for rmpath in rmpaths:
os.remove(rmpath)
else:
os.mkdir(os.path.join(datasets_folder, args.database_name + '_' +
str(args.database_index) + '_' + args.queries_name + '_' + str(args.queries_index)))
np.random.seed(0)
if args.region_num >= 1:
create_h5_file(args, name='database', split='train', sample_num=args.train_sample_num)
create_h5_file(args, name='queries', split='train', sample_num=args.train_sample_num)
if args.region_num >= 2:
create_h5_file(args, name='database', split='val', sample_num=args.val_sample_num)
create_h5_file(args, name='queries', split='val', sample_num=args.val_sample_num)
if args.region_num == 2:
# Not enough test data. Use val as test
os.symlink(os.path.abspath(os.path.join(datasets_folder, args.database_name + '_' + str(args.database_index) + '_' + args.queries_name + '_' + str(args.queries_index), 'val_database.h5')),
os.path.join(datasets_folder, args.database_name + '_' + str(args.database_index) + '_' + args.queries_name + '_' + str(args.queries_index), 'test_database.h5'))
os.symlink(os.path.abspath(os.path.join(datasets_folder, args.database_name + '_' + str(args.database_index) + '_' + args.queries_name + '_' + str(args.queries_index), 'val_queries.h5')),
os.path.join(datasets_folder, args.database_name + '_' + str(args.database_index) + '_' + args.queries_name + '_' + str(args.queries_index), 'test_queries.h5'))
elif args.region_num == 3:
create_h5_file(args, name='database', split='test', sample_num=args.val_sample_num)
create_h5_file(args, name='queries', split='test', sample_num=args.val_sample_num)