-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtest.py
611 lines (565 loc) · 27.3 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
import faiss
import torch
import logging
import numpy as np
from tqdm import tqdm
from torchvision import transforms
from torch.utils.data import DataLoader
from torch.utils.data.dataset import Subset
from utils.plotting import process_results_simulation
from h5_transformer import calc_overlap
from model.functional import calculate_psnr
import yaml
import os
from PIL import Image
import shutil
import datasets_ws
import h5py
def test_efficient_ram_usage(args, eval_ds, model, test_method="hard_resize"):
"""This function gives the same output as test(), but uses much less RAM.
This can be useful when testing with large descriptors (e.g. NetVLAD) on large datasets (e.g. San Francisco).
Obviously it is slower than test(), and can't be used with PCA.
"""
model = model.eval()
if test_method == "nearest_crop" or test_method == "maj_voting":
distances = np.empty(
[eval_ds.queries_num * 5, eval_ds.database_num], dtype=np.float32
)
else:
distances = np.empty(
[eval_ds.queries_num, eval_ds.database_num], dtype=np.float32
)
with torch.no_grad():
if test_method == "nearest_crop" or test_method == "maj_voting":
queries_features = np.ones(
(eval_ds.queries_num * 5, args.features_dim), dtype="float32"
)
else:
queries_features = np.ones(
(eval_ds.queries_num, args.features_dim), dtype="float32"
)
logging.debug("Extracting queries features for evaluation/testing")
queries_infer_batch_size = (
1 if test_method == "single_query" else args.infer_batch_size
)
eval_ds.test_method = test_method
queries_subset_ds = Subset(
eval_ds,
list(
range(eval_ds.database_num,
eval_ds.database_num + eval_ds.queries_num)
),
)
queries_dataloader = DataLoader(
dataset=queries_subset_ds,
num_workers=args.num_workers,
batch_size=queries_infer_batch_size,
pin_memory=(args.device == "cuda"),
)
for inputs, indices in tqdm(queries_dataloader, ncols=100):
if (
test_method == "five_crops"
or test_method == "nearest_crop"
or test_method == "maj_voting"
):
# shape = 5*bs x 3 x 480 x 480
inputs = torch.cat(tuple(inputs))
features = model(inputs.to(args.device))
if test_method == "five_crops": # Compute mean along the 5 crops
features = torch.stack(torch.split(features, 5)).mean(1)
if test_method == "nearest_crop" or test_method == "maj_voting":
start_idx = (indices[0] - eval_ds.database_num) * 5
end_idx = start_idx + indices.shape[0] * 5
indices = np.arange(start_idx, end_idx)
queries_features[indices, :] = features.cpu().numpy()
else:
queries_features[
indices.numpy() - eval_ds.database_num, :
] = features.cpu().numpy()
queries_features = torch.tensor(
queries_features).type(torch.float32).cuda()
logging.debug("Extracting database features for evaluation/testing")
# For database use "hard_resize", although it usually has no effect because database images have same resolution
eval_ds.test_method = "hard_resize"
database_subset_ds = Subset(eval_ds, list(range(eval_ds.database_num)))
database_dataloader = DataLoader(
dataset=database_subset_ds,
num_workers=args.num_workers,
batch_size=args.infer_batch_size,
pin_memory=(args.device == "cuda"),
)
for inputs, indices in tqdm(database_dataloader, ncols=100):
inputs = inputs.to(args.device)
features = model(inputs)
for pn, (index, pred_feature) in enumerate(zip(indices, features)):
distances[:, index] = (
((queries_features - pred_feature) ** 2).sum(1).cpu().numpy()
)
del features, queries_features, pred_feature
predictions = distances.argsort(axis=1)[:, : max(args.recall_values)]
if test_method == "nearest_crop":
distances = np.array(
[distances[row, index] for row, index in enumerate(predictions)]
)
distances = np.reshape(distances, (eval_ds.queries_num, 20 * 5))
predictions = np.reshape(predictions, (eval_ds.queries_num, 20 * 5))
for q in range(eval_ds.queries_num):
# sort predictions by distance
sort_idx = np.argsort(distances[q])
predictions[q] = predictions[q, sort_idx]
# remove duplicated predictions, i.e. keep only the closest ones
_, unique_idx = np.unique(predictions[q], return_index=True)
# unique_idx is sorted based on the unique values, sort it again
predictions[q, :20] = predictions[q, np.sort(unique_idx)][:20]
predictions = predictions[
:, :20
] # keep only the closer 20 predictions for each
elif test_method == "maj_voting":
distances = np.array(
[distances[row, index] for row, index in enumerate(predictions)]
)
distances = np.reshape(distances, (eval_ds.queries_num, 5, 20))
predictions = np.reshape(predictions, (eval_ds.queries_num, 5, 20))
for q in range(eval_ds.queries_num):
# votings, modify distances in-place
top_n_voting("top1", predictions[q],
distances[q], args.majority_weight)
top_n_voting("top5", predictions[q],
distances[q], args.majority_weight)
top_n_voting("top10", predictions[q],
distances[q], args.majority_weight)
# flatten dist and preds from 5, 20 -> 20*5
# and then proceed as usual to keep only first 20
dists = distances[q].flatten()
preds = predictions[q].flatten()
# sort predictions by distance
sort_idx = np.argsort(dists)
preds = preds[sort_idx]
# remove duplicated predictions, i.e. keep only the closest ones
_, unique_idx = np.unique(preds, return_index=True)
# unique_idx is sorted based on the unique values, sort it again
# here the row corresponding to the first crop is used as a
# 'buffer' for each query, and in the end the dimension
# relative to crops is eliminated
predictions[q, 0, :20] = preds[np.sort(unique_idx)][:20]
predictions = predictions[
:, 0, :20
] # keep only the closer 20 predictions for each query
del distances
# For each query, check if the predictions are correct
positives_per_query = eval_ds.get_positives()
# args.recall_values by default is [1, 5, 10, 20]
recalls = np.zeros(len(args.recall_values))
for query_index, pred in enumerate(predictions):
for i, n in enumerate(args.recall_values):
if np.any(np.in1d(pred[:n], positives_per_query[query_index])):
recalls[i:] += 1
break
recalls = recalls / eval_ds.queries_num * 100
recalls_str = ", ".join(
[f"R@{val}: {rec:.1f}" for val,
rec in zip(args.recall_values, recalls)]
)
return recalls, recalls_str
def test(args, eval_ds, model, model_db=None, test_method="hard_resize", pca=None, visualize=False):
"""Compute features of the given dataset and compute the recalls."""
assert test_method in [
"hard_resize",
"single_query",
"central_crop",
"five_crops",
"nearest_crop",
"maj_voting",
], f"test_method can't be {test_method}"
if args.efficient_ram_testing:
if model_db is not None:
raise NotImplementedError()
return test_efficient_ram_usage(args, eval_ds, model, test_method)
model = model.eval()
if model_db is not None:
model_db = model_db.eval()
with torch.no_grad():
logging.debug("Extracting database features for evaluation/testing")
# For database use "hard_resize", although it usually has no effect because database images have same resolution
eval_ds.test_method = "hard_resize"
database_subset_ds = Subset(eval_ds, list(range(eval_ds.database_num)))
database_dataloader = DataLoader(
dataset=database_subset_ds,
num_workers=args.num_workers,
batch_size=args.infer_batch_size,
pin_memory=(args.device == "cuda"),
)
if test_method == "nearest_crop" or test_method == "maj_voting":
all_features = np.empty(
(5 * eval_ds.queries_num + eval_ds.database_num, args.features_dim),
dtype="float32",
)
else:
all_features = np.empty(
(len(eval_ds), args.features_dim), dtype="float32")
for inputs, indices in tqdm(database_dataloader, ncols=100):
if model_db is not None:
features = model_db(inputs.to(args.device))
else:
features = model(inputs.to(args.device))
features = features.cpu().numpy()
if pca != None:
features = pca.transform(features)
all_features[indices.numpy(), :] = features
logging.debug("Extracting queries features for evaluation/testing")
queries_infer_batch_size = (
1 if test_method == "single_query" else args.infer_batch_size
)
eval_ds.test_method = test_method
queries_subset_ds = Subset(
eval_ds,
list(
range(eval_ds.database_num,
eval_ds.database_num + eval_ds.queries_num)
),
)
queries_dataloader = DataLoader(
dataset=queries_subset_ds,
num_workers=args.num_workers,
batch_size=queries_infer_batch_size,
pin_memory=(args.device == "cuda"),
)
for inputs, indices in tqdm(queries_dataloader, ncols=100):
if (
test_method == "five_crops"
or test_method == "nearest_crop"
or test_method == "maj_voting"
):
# shape = 5*bs x 3 x 480 x 480
inputs = torch.cat(tuple(inputs))
features = model(inputs.to(args.device))
if test_method == "five_crops": # Compute mean along the 5 crops
features = torch.stack(torch.split(features, 5)).mean(1)
features = features.cpu().numpy()
if pca != None:
features = pca.transform(features)
if (
test_method == "nearest_crop" or test_method == "maj_voting"
): # store the features of all 5 crops
start_idx = (
eval_ds.database_num +
(indices[0] - eval_ds.database_num) * 5
)
end_idx = start_idx + indices.shape[0] * 5
indices = np.arange(start_idx, end_idx)
all_features[indices, :] = features
else:
all_features[indices.numpy(), :] = features
queries_features = all_features[eval_ds.database_num:]
database_features = all_features[: eval_ds.database_num]
logging.info(f"Final feature dim: {queries_features.shape[1]}")
del all_features
logging.debug("Calculating recalls")
if args.prior_location_threshold == -1:
if args.use_faiss_gpu:
res = faiss.StandardGpuResources()
faiss_index = faiss.GpuIndexFlatL2(res, args.features_dim)
else:
faiss_index = faiss.IndexFlatL2(args.features_dim)
faiss_index.add(database_features)
distances, predictions = faiss_index.search(
queries_features, max(args.recall_values)
)
del database_features
else:
distances, predictions = [[] for i in range(len(queries_features))], [[] for i in range(len(queries_features))]
hard_negatives_per_query = eval_ds.get_hard_negatives()
for query_index in tqdm(range(len(predictions))):
faiss_index = faiss.IndexFlatL2(args.features_dim)
faiss_index.add(database_features[hard_negatives_per_query[query_index]])
distances_single, local_predictions_single = faiss_index.search(
np.expand_dims(queries_features[query_index], axis=0), max(args.recall_values)
)
# logging.debug(f"distances_single:{distances_single}")
# logging.debug(f"predictions_single:{predictions_single}")
distances[query_index] = distances_single
predictions_single = hard_negatives_per_query[query_index][local_predictions_single]
predictions[query_index] = predictions_single
distances = np.concatenate(distances, axis=0)
predictions = np.concatenate(predictions, axis=0)
del database_features
if test_method == "nearest_crop":
distances = np.reshape(distances, (eval_ds.queries_num, 20 * 5))
predictions = np.reshape(predictions, (eval_ds.queries_num, 20 * 5))
for q in range(eval_ds.queries_num):
# sort predictions by distance
sort_idx = np.argsort(distances[q])
predictions[q] = predictions[q, sort_idx]
# remove duplicated predictions, i.e. keep only the closest ones
_, unique_idx = np.unique(predictions[q], return_index=True)
# unique_idx is sorted based on the unique values, sort it again
predictions[q, :20] = predictions[q, np.sort(unique_idx)][:20]
predictions = predictions[
:, :20
] # keep only the closer 20 predictions for each query
elif test_method == "maj_voting":
distances = np.reshape(distances, (eval_ds.queries_num, 5, 20))
predictions = np.reshape(predictions, (eval_ds.queries_num, 5, 20))
for q in range(eval_ds.queries_num):
# votings, modify distances in-place
top_n_voting("top1", predictions[q],
distances[q], args.majority_weight)
top_n_voting("top5", predictions[q],
distances[q], args.majority_weight)
top_n_voting("top10", predictions[q],
distances[q], args.majority_weight)
# flatten dist and preds from 5, 20 -> 20*5
# and then proceed as usual to keep only first 20
dists = distances[q].flatten()
preds = predictions[q].flatten()
# sort predictions by distance
sort_idx = np.argsort(dists)
preds = preds[sort_idx]
# remove duplicated predictions, i.e. keep only the closest ones
_, unique_idx = np.unique(preds, return_index=True)
# unique_idx is sorted based on the unique values, sort it again
# here the row corresponding to the first crop is used as a
# 'buffer' for each query, and in the end the dimension
# relative to crops is eliminated
predictions[q, 0, :20] = preds[np.sort(unique_idx)][:20]
predictions = predictions[
:, 0, :20
] # keep only the closer 20 predictions for each query
# For each query, check if the predictions are correct
positives_per_query = eval_ds.get_positives()
# args.recall_values by default is [1, 5, 10, 20]
recalls = np.zeros(len(args.recall_values))
for query_index, pred in enumerate(predictions):
for i, n in enumerate(args.recall_values):
if np.any(np.in1d(pred[:n], positives_per_query[query_index])):
recalls[i:] += 1
break
# Divide by the number of queries*100, so the recalls are in percentages
recalls = recalls / eval_ds.queries_num * 100
recalls_str = ", ".join(
[f"R@{val}: {rec:.1f}" for val,
rec in zip(args.recall_values, recalls)]
)
if args.use_best_n > 0:
if visualize:
if os.path.isdir("visual_loc"):
shutil.rmtree("visual_loc")
os.mkdir("visual_loc")
save_dir = "visual_loc"
# init dataset
eval_ds.__getitem__(0)
samples_to_be_used = args.use_best_n
error_m = []
position_m = []
for query_index in tqdm(range(len(predictions))):
distance = distances[query_index]
prediction = predictions[query_index]
sort_idx = np.argsort(distance)
if args.use_best_n == 1:
best_position = eval_ds.database_utms[prediction[sort_idx[0]]]
else:
if distance[sort_idx[0]] == 0:
best_position = eval_ds.database_utms[prediction[sort_idx[0]]]
else:
mean = distance[sort_idx[0]]
sigma = distance[sort_idx[0]] / distance[sort_idx[-1]]
X = np.array(distance[sort_idx[:samples_to_be_used]]).reshape((-1,))
weights = np.exp(-np.square(X - mean) / (2 * sigma ** 2)) # gauss
weights = weights / np.sum(weights)
x = y = 0
for p, w in zip(eval_ds.database_utms[prediction[sort_idx[:samples_to_be_used]]], weights.tolist()):
y += p[0] * w
x += p[1] * w
best_position = (y, x)
actual_position = eval_ds.queries_utms[query_index]
error = np.linalg.norm((actual_position[0]-best_position[0], actual_position[1]-best_position[1]))
if error >= 50 and visualize: # Wrong results
database_index = prediction[sort_idx[0]]
database_img = eval_ds._find_img_in_h5(database_index, "database")
if args.G_contrast:
query_img = transforms.functional.adjust_contrast(eval_ds._find_img_in_h5(query_index, "queries"), contrast_factor=3)
else:
query_img = eval_ds._find_img_in_h5(query_index, "queries")
result = Image.new(database_img.mode, (524, 524), (255, 0, 0))
result.paste(database_img, (6, 6))
database_img = result
database_img.save(f"{save_dir}/{query_index}_wrong_d.png")
query_img.save(f"{save_dir}/{query_index}_wrong_q.png")
elif error <= 35 and visualize: # Wrong results
database_index = prediction[sort_idx[0]]
database_img = eval_ds._find_img_in_h5(database_index, "database")
if args.G_contrast:
query_img = transforms.functional.adjust_contrast(eval_ds._find_img_in_h5(query_index, "queries"), contrast_factor=3)
else:
query_img = eval_ds._find_img_in_h5(query_index, "queries")
result = Image.new(database_img.mode, (524, 524), (0, 255, 0))
result.paste(database_img, (6, 6))
database_img = result
database_img.save(f"{save_dir}/{query_index}_correct_d.png")
query_img.save(f"{save_dir}/{query_index}_correct_q.png")
elif visualize: # Ambiguous results
database_index = prediction[sort_idx[0]]
database_img = eval_ds._find_img_in_h5(database_index, "database")
if args.G_contrast:
query_img = transforms.functional.adjust_contrast(eval_ds._find_img_in_h5(query_index, "queries"), contrast_factor=3)
else:
query_img = eval_ds._find_img_in_h5(query_index, "queries")
result = Image.new(database_img.mode, (524, 524), (128, 128, 128))
result.paste(database_img, (6, 6))
database_img = result
database_img.save(f"{save_dir}/{query_index}_d.png")
query_img.save(f"{save_dir}/{query_index}_q.png")
error_m.append(error)
position_m.append(actual_position)
process_results_simulation(error_m, args.save_dir)
return recalls, recalls_str
def test_translation_pix2pix(args, eval_ds, model, visual_current=False, visual_image_num=10, epoch_num=None):
"""Compute PSNR of the given dataset and compute the recalls."""
if args.G_test_norm == "batch":
model.netG = model.netG.eval()
elif args.G_test_norm == "instance":
model.netG = model.netG.train()
psnr_sum = 0
psnr_count = 0
save_dir = None
if args.visual_all:
if os.path.isdir("visual_all"):
shutil.rmtree("visual_all")
os.mkdir("visual_all")
save_dir = "visual_all"
if visual_current:
if not os.path.isdir(os.path.join(args.save_dir, "visual_current")):
os.mkdir(os.path.join(args.save_dir, "visual_current"))
save_dir = os.path.join(args.save_dir, "visual_current")
with torch.no_grad():
# For database use "hard_resize", although it usually has no effect because database images have same resolution
eval_ds.test_method = "hard_resize"
eval_ds.is_inference = True
eval_ds.compute_pairs(args)
eval_ds.is_inference = False
eval_dataloader = DataLoader(
dataset=eval_ds,
num_workers=args.num_workers,
batch_size=1,
pin_memory=(args.device == "cuda"),
shuffle=False
)
logging.debug("Calculating PSNR")
for query, database, query_name, database_name in tqdm(eval_dataloader, ncols=100):
# Compute features of all images (images contains queries, positives and negatives)
model.set_input(database, query)
model.forward()
output = model.fake_B
output = torch.clamp(output, min=-1, max=1)
query_images = query.to(args.device) * 0.5 + 0.5
output_images = output * 0.5 + 0.5
database_images = database.to(args.device) * 0.5 + 0.5
if args.visual_all or (visual_current == True and psnr_count < visual_image_num):
vis_image_1 = transforms.ToPILImage()(output_images[0].cpu())
vis_image_2 = transforms.ToPILImage()(query_images[0].cpu())
vis_image_3 = transforms.ToPILImage()(database_images[0].cpu())
dst = Image.new('RGB', (vis_image_1.width, vis_image_1.height + vis_image_2.height + vis_image_3.height))
dst.paste(vis_image_1, (0, 0))
dst.paste(vis_image_2, (0, vis_image_1.height))
dst.paste(vis_image_3, (0, vis_image_1.height + vis_image_2.height))
if args.visual_all:
vis_image_1.save(f"{save_dir}/{psnr_count}_gen.jpg")
vis_image_2.save(f"{save_dir}/{psnr_count}_gt.jpg")
vis_image_3.save(f"{save_dir}/{psnr_count}_st.jpg")
elif visual_current:
dst.save(f"{save_dir}/{epoch_num}_{query_name}.jpg")
elif visual_current == True and psnr_count >= visual_image_num:
# early stop
break
psnr_sum += calculate_psnr(query_images, output_images)
psnr_count += 1
psnr_sum /= psnr_count
psnr_str = f"PSNR: {psnr_sum:.1f}"
return [psnr_sum], psnr_str
def test_translation_pix2pix_generate_h5(args, eval_ds, model):
"""Compute PSNR of the given dataset and compute the recalls."""
if args.G_test_norm == "batch":
model.netG = model.netG.eval()
elif args.G_test_norm == "instance":
model.netG = model.netG.train()
save_path = os.path.join(args.save_dir, "train_queries.h5")
with torch.no_grad():
# For database use "hard_resize", although it usually has no effect because database images have same resolution
eval_ds.test_method = "hard_resize"
eval_ds.is_inference = True
eval_ds.compute_pairs(args)
eval_ds.is_inference = False
eval_dataloader = DataLoader(
dataset=eval_ds,
num_workers=args.num_workers,
batch_size=16 if args.G_test_norm == "batch" else 1,
pin_memory=(args.device == "cuda"),
shuffle=False
)
with h5py.File(save_path, "a") as hf:
start = False
img_names = []
for query, database, query_path, database_path in tqdm(eval_dataloader, ncols=100):
# Compute features of all images (images contains queries, positives and negatives)
model.set_input(database, query)
model.forward()
output = model.fake_B
output = torch.clamp(output, min=-1, max=1)
output_images = output * 0.5 + 0.5
for i in range(len(database_path)):
generated_query = transforms.Grayscale(num_output_channels=3)(transforms.Resize(args.resize)(transforms.ToPILImage()(output_images[i].cpu())))
cood_y = database_path[i].split("@")[1]
cood_x = database_path[i].split("@")[2]
name = f"@{cood_y}@{cood_x}"
img_names.append(name)
img_np = np.array(generated_query)
img_np = np.expand_dims(img_np, axis=0)
size_np = np.expand_dims(
np.array([img_np.shape[1], img_np.shape[2]]), axis=0)
if not start:
hf.create_dataset(
"image_data",
data=img_np,
chunks=(1, 512, 512, 3),
maxshape=(None, 512, 512, 3),
compression="lzf",
) # write the data to hdf5 file
hf.create_dataset(
"image_size",
data=size_np,
chunks=True,
maxshape=(None, 2),
compression="lzf",
)
start = True
else:
hf["image_data"].resize(
hf["image_data"].shape[0] + img_np.shape[0], axis=0
)
hf["image_data"][-img_np.shape[0]:] = img_np
hf["image_size"].resize(
hf["image_size"].shape[0] + size_np.shape[0], axis=0
)
hf["image_size"][-size_np.shape[0]:] = size_np
t = h5py.string_dtype(encoding="utf-8")
hf.create_dataset("image_name", data=img_names,
dtype=t, compression="lzf")
print("hdf5 file size: %d bytes" % os.path.getsize(save_path))
def top_n_voting(topn, predictions, distances, maj_weight):
if topn == "top1":
n = 1
selected = 0
elif topn == "top5":
n = 5
selected = slice(0, 5)
elif topn == "top10":
n = 10
selected = slice(0, 10)
# find predictions that repeat in the first, first five,
# or fist ten columns for each crop
vals, counts = np.unique(predictions[:, selected], return_counts=True)
# for each prediction that repeats more than once,
# subtract from its score
for val, count in zip(vals[counts > 1], counts[counts > 1]):
mask = predictions[:, selected] == val
distances[:, selected][mask] -= maj_weight * count / n