-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain.py
538 lines (490 loc) · 21.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
from model.functional import sare_ind, sare_joint
from model.sync_batchnorm import convert_model
from model import network
import datasets_ws
import commons
import parser
import test
import util
import math
import torch
import logging
import numpy as np
from tqdm import tqdm
import torch.nn as nn
import multiprocessing
from os.path import join
from datetime import datetime
import torchvision.transforms as transforms
from torch.utils.data.dataloader import DataLoader
import copy
import wandb
from uuid import uuid4
torch.backends.cudnn.benchmark = True # Provides a speedup
# Initial setup: parser, logging...
args = parser.parse_arguments()
if args.use_extended_data:
raise NotImplementedError("Please use train_extended.py")
start_time = datetime.now()
args.save_dir = join(
"logs",
args.save_dir,
f"{args.dataset_name}-{start_time.strftime('%Y-%m-%d_%H-%M-%S')}-{uuid4()}",
)
commons.setup_logging(args.save_dir)
commons.make_deterministic(args.seed)
logging.info(f"Arguments: {args}")
wandb.init(project="VTL", entity="xjh19971", config=vars(args))
logging.info(f"The outputs are being saved in {args.save_dir}")
logging.info(
f"Using {torch.cuda.device_count()} GPUs and {multiprocessing.cpu_count()} CPUs"
)
# Creation of Datasets
logging.debug(
f"Loading dataset {args.dataset_name} from folder {args.datasets_folder}")
train_ds = None
train_ds = datasets_ws.TripletsDataset(
args, args.datasets_folder, args.dataset_name, "train", args.negs_num_per_query
)
logging.info(f"Train query set: {train_ds}")
val_ds = datasets_ws.BaseDataset(
args, args.datasets_folder, args.dataset_name, "val")
logging.info(f"Val set: {val_ds}")
test_ds = datasets_ws.BaseDataset(
args, args.datasets_folder, args.dataset_name, "test")
logging.info(f"Test set: {test_ds}")
# Initialize model
model = network.GeoLocalizationNet(args)
model.to(args.device)
domain_classifier = None
if args.DA.startswith("DANN"):
domain_classifier = model.create_domain_classifier(args)
if args.aggregation in ["netvlad", "crn"]: # If using NetVLAD layer, initialize it
if not args.resume:
train_ds.is_inference = True
model.aggregation.initialize_netvlad_layer(
args, train_ds, model.backbone)
args.features_dim *= args.netvlad_clusters
if args.separate_branch:
logging.info('Backbone has separated branched for database and query')
model_db = copy.deepcopy(model)
model_db = torch.nn.DataParallel(model_db)
if torch.cuda.device_count() >= 2:
# When using more than 1GPU, use sync_batchnorm for torch.nn.DataParallel
model_db = convert_model(model_db)
model_db = model_db.to(args.device)
model = torch.nn.DataParallel(model)
if torch.cuda.device_count() >= 2:
# When using more than 1GPU, use sync_batchnorm for torch.nn.DataParallel
model = convert_model(model)
model = model.to(args.device)
if domain_classifier is not None:
domain_classifier = torch.nn.DataParallel(domain_classifier)
# When using more than 1GPU, use sync_batchnorm for torch.nn.DataParallel
domain_classifier = convert_model(domain_classifier)
domain_classifier = domain_classifier.to(args.device)
# Setup Optimizer and Loss
if args.aggregation == "crn":
if domain_classifier is not None:
raise NotImplementedError("DA for crn is not Implemented")
crn_params = list(model.module.aggregation.crn.parameters())
net_params = list(model.module.backbone.parameters()) + list(
[
m[1]
for m in model.module.aggregation.named_parameters()
if not m[0].startswith("crn")
]
)
if args.separate_branch:
net_db_params = list(model_db.module.backbone.parameters()) + list(
[
m[1]
for m in model_db.module.aggregation.named_parameters()
if not m[0].startswith("crn")
]
)
if args.optim == "adam":
if args.separate_branch:
optimizer = torch.optim.Adam(
[
{"params": crn_params, "lr": args.lr_crn_layer},
{"params": net_params, "lr": args.lr_crn_net},
{"params": net_db_params, "lr": args.lr_crn_net},
]
)
else:
optimizer = torch.optim.Adam(
[
{"params": crn_params, "lr": args.lr_crn_layer},
{"params": net_params, "lr": args.lr_crn_net},
]
)
logging.info("You're using CRN with Adam, it is advised to use SGD")
elif args.optim == "sgd":
if args.separate_branch:
optimizer = torch.optim.SGD(
[
{
"params": crn_params,
"lr": args.lr_crn_layer,
"momentum": 0.9,
"weight_decay": 0.001,
},
{
"params": net_params,
"lr": args.lr_crn_net,
"momentum": 0.9,
"weight_decay": 0.001,
},
{
"params": net_db_params,
"lr": args.lr_crn_net,
"momentum": 0.9,
"weight_decay": 0.001,
},
]
)
else:
optimizer = torch.optim.SGD(
[
{
"params": crn_params,
"lr": args.lr_crn_layer,
"momentum": 0.9,
"weight_decay": 0.001,
},
{
"params": net_params,
"lr": args.lr_crn_net,
"momentum": 0.9,
"weight_decay": 0.001,
},
]
)
else:
if args.optim == "adam":
if args.separate_branch:
if domain_classifier is not None:
optimizer = torch.optim.Adam(list(model.parameters()) + list(model_db.parameters()) + list(domain_classifier.parameters()), lr=args.lr, weight_decay=args.weight_decay)
else:
optimizer = torch.optim.Adam(list(model.parameters()) + list(model_db.parameters()), lr=args.lr, weight_decay=args.weight_decay)
else:
if domain_classifier is not None:
optimizer = torch.optim.Adam(list(model.parameters()) + list(domain_classifier.parameters()), lr=args.lr, weight_decay=args.weight_decay)
else:
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
elif args.optim == "sgd":
if args.separate_branch:
if domain_classifier is not None:
optimizer = torch.optim.SGD(list(model.parameters()) + list(model_db.parameters()) + list(domain_classifier.parameters()), lr=args.lr, momentum=0.9, weight_decay=0.001)
else:
optimizer = torch.optim.SGD(list(model.parameters()) + list(model_db.parameters()), lr=args.lr, momentum=0.9, weight_decay=0.001)
else:
if domain_classifier is not None:
optimizer = torch.optim.SGD(list(model.parameters()) + list(domain_classifier.parameters()), lr=args.lr, momentum=0.9, weight_decay=0.001)
else:
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=0.9, weight_decay=0.001)
if args.criterion == "triplet":
criterion_triplet = nn.TripletMarginLoss(
margin=args.margin, p=2, reduction="sum")
elif args.criterion == "sare_ind":
criterion_triplet = sare_ind
elif args.criterion == "sare_joint":
criterion_triplet = sare_joint
logging.info(f'Domain adapataion: {args.DA}')
if args.DA.startswith('DANN'):
criterion_DA = torch.nn.NLLLoss(reduction='sum')
# Resume model, optimizer, and other training parameters
if args.resume:
if args.aggregation != "crn":
if args.separate_branch:
(
model,
model_db,
optimizer,
best_r5,
start_epoch_num,
not_improved_num,
) = util.resume_train_separate(args, model, model_db, optimizer, DA=domain_classifier)
else:
(
model,
optimizer,
best_r5,
start_epoch_num,
not_improved_num,
) = util.resume_train(args, model, optimizer, DA=domain_classifier)
else:
# CRN uses pretrained NetVLAD, then requires loading with strict=False and
# does not load the optimizer from the checkpoint file.
if args.separate_branch:
model, _, best_r5, start_epoch_num, not_improved_num = util.resume_train_separate(
args, model, model_db, strict=False, DA=domain_classifier
)
else:
model, _, best_r5, start_epoch_num, not_improved_num = util.resume_train(
args, model, strict=False, DA=domain_classifier
)
logging.info(
f"Resuming from epoch {start_epoch_num} with best recall@5 {best_r5:.1f}"
)
else:
best_r5 = start_epoch_num = not_improved_num = 0
if args.backbone.startswith("vit"):
logging.info(f"Output dimension of the model is {args.features_dim}")
else:
model = model.eval()
logging.info(
f"Output dimension of the model is {args.features_dim}"
)
# logging.info(
# f"Output dimension of the model is {args.features_dim}, with {util.get_flops(model, args.resize)}"
# )
# Training loop
for epoch_num in range(start_epoch_num, args.epochs_num):
logging.info(f"Start training epoch: {epoch_num:02d}")
epoch_start_time = datetime.now()
epoch_losses = np.zeros((0, 1), dtype=np.float32)
epoch_triplet_losses = np.zeros((0, 1), dtype=np.float32)
if args.DA != 'none':
p = epoch_num / args.epochs_num # p in [0, 1)
alpha = 2. / (1. + np.exp(-10 * p)) - 1
epoch_DA_losses = np.zeros((0, 1), dtype=np.float32)
# How many loops should an epoch last (default is 5000/1000=5)
loops_num = math.ceil(args.queries_per_epoch / args.cache_refresh_rate)
for loop_num in range(loops_num):
logging.debug(f"Cache: {loop_num} / {loops_num}")
# Compute triplets to use in the triplet loss
train_ds.is_inference = True
if args.separate_branch:
train_ds.compute_triplets(args, model, model_db)
else:
train_ds.compute_triplets(args, model)
train_ds.is_inference = False
triplets_dl = DataLoader(
dataset=train_ds,
num_workers=args.num_workers,
batch_size=args.train_batch_size,
collate_fn=datasets_ws.collate_fn,
pin_memory=(args.device == "cuda"),
drop_last=True,
)
model = model.train()
if args.separate_branch:
model_db = model_db.train()
# images shape: (train_batch_size*12)*3*H*W ; by default train_batch_size=4, H=512, W=512
# triplets_local_indexes shape: (train_batch_size*10)*3 ; because 10 triplets per query
for images, triplets_local_indexes, _ in tqdm(triplets_dl, ncols=100):
# Flip all triplets or none
if args.horizontal_flip:
images = transforms.RandomHorizontalFlip()(images)
# Compute features of all images (images contains queries, positives and negatives)
if args.separate_branch:
# model is for query and model_db is for database
# query1 + pos1 + neg1s(neg_num) + query2 + pos2 + neg2(neg_num) + ...
# Extract query image
query_images_index = np.arange(0, len(images), 1 + 1 + args.negs_num_per_query)
images_index = np.arange(0, len(images))
database_images_index = np.setdiff1d(images_index, query_images_index, assume_unique=True)
query_images = images[query_images_index]
database_images = images[database_images_index]
if args.DA.startswith('DANN'):
database_feature, database_reverse_x = model_db(database_images.to(args.device), is_train=True, alpha=alpha)
positive_images_index_local = np.arange(0, len(database_reverse_x), 1 + args.negs_num_per_query)
if args.DA_only_positive:
database_reverse_x = database_reverse_x[positive_images_index_local]
database_domain_label = domain_classifier(database_reverse_x)
query_feature, query_reverse_x = model(query_images.to(args.device), is_train=True, alpha=alpha)
query_domain_label = domain_classifier(query_reverse_x)
else:
database_feature = model_db(database_images.to(args.device), is_train=True)
query_feature = model(query_images.to(args.device), is_train=True)
features = torch.empty((len(images), query_feature.shape[1])).to(args.device)
features[query_images_index] = query_feature
features[database_images_index] = database_feature
del database_feature, query_feature
else:
if args.DA.startswith('DANN'):
images_index = np.arange(0, len(images))
query_images_index = np.arange(0, len(images), 1 + 1 + args.negs_num_per_query)
database_images_index = np.setdiff1d(images_index, query_images_index, assume_unique=True)
positive_images_index = np.arange(1, len(images), 1 + 1 + args.negs_num_per_query)
features, reverse_x = model(images.to(args.device), is_train=True)
if args.DA_only_positive:
database_reverse_x = reverse_x[positive_images_index]
else:
database_reverse_x = reverse_x[database_images_index]
query_reverse_x = reverse_x[query_images_index]
database_domain_label = domain_classifier(database_reverse_x)
query_domain_label = domain_classifier(query_reverse_x)
else:
features = model(images.to(args.device), is_train=True)
loss_triplet = 0
if args.criterion == "triplet":
triplets_local_indexes = torch.transpose(
triplets_local_indexes.view(
args.train_batch_size, args.negs_num_per_query, 3
),
1,
0,
)
for triplets in triplets_local_indexes:
queries_indexes, positives_indexes, negatives_indexes = triplets.T
loss_triplet += criterion_triplet(
features[queries_indexes],
features[positives_indexes],
features[negatives_indexes],
)
elif args.criterion == "sare_joint":
# sare_joint needs to receive all the negatives at once
triplet_index_batch = triplets_local_indexes.view(
args.train_batch_size, 10, 3
)
for batch_triplet_index in triplet_index_batch:
q = features[batch_triplet_index[0, 0]].unsqueeze(
0
) # obtain query as tensor of shape 1xn_features
p = features[batch_triplet_index[0, 1]].unsqueeze(
0
) # obtain positive as tensor of shape 1xn_features
n = features[
batch_triplet_index[:, 2]
] # obtain negatives as tensor of shape 10xn_features
loss_triplet += criterion_triplet(q, p, n)
elif args.criterion == "sare_ind":
for triplet in triplets_local_indexes:
# triplet is a 1-D tensor with the 3 scalars indexes of the triplet
q_i, p_i, n_i = triplet
loss_triplet += criterion_triplet(
features[q_i: q_i + 1],
features[p_i: p_i + 1],
features[n_i: n_i + 1],
)
del features
loss_triplet /= args.train_batch_size * args.negs_num_per_query
if args.DA.startswith('DANN'):
query_target_label = torch.zeros(query_domain_label.shape[0]).long().to(args.device)
if args.DA_only_positive:
# Positive sample num = query sample num
database_target_label = torch.ones(query_domain_label.shape[0]).long().to(args.device)
else:
database_target_label = torch.ones(database_domain_label.shape[0]).long().to(args.device)
loss_DA = criterion_DA(query_domain_label, query_target_label) + \
criterion_DA(database_domain_label, database_target_label)
loss_DA /= query_domain_label.shape[0] + database_domain_label.shape[0]
loss = loss_triplet + args.lambda_DA * loss_DA
else:
loss = loss_triplet
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Keep track of all losses by appending them to epoch_losses
triplet_loss = loss_triplet.item()
batch_loss = loss.item()
epoch_triplet_losses = np.append(epoch_triplet_losses, triplet_loss)
epoch_losses = np.append(epoch_losses, batch_loss)
if args.DA != 'none':
DA_loss = loss_DA.item()
epoch_DA_losses = np.append(epoch_DA_losses, DA_loss)
del loss
debug_str = f"Epoch[{epoch_num:02d}]({loop_num}/{loops_num}): "+ \
f"current batch sum loss = {batch_loss:.4f}, "+ \
f"average epoch sum loss = {epoch_losses.mean():.4f}, "+ \
f"current batch triplet loss = {triplet_loss:.4f}, "+ \
f"average epoch triplet loss = {epoch_triplet_losses.mean():.4f}, "
if args.DA != 'none':
debug_str+= f"current batch DA loss = {DA_loss:.4f}, "+ \
f"average epoch DA loss = {epoch_DA_losses.mean():.4f}, "
logging.debug(debug_str)
del triplets_dl
info_str = f"Finished epoch {epoch_num:02d} in {str(datetime.now() - epoch_start_time)[:-7]}, "+ \
f"average epoch sum loss = {epoch_losses.mean():.4f}, "+ \
f"average epoch triplet loss = {epoch_triplet_losses.mean():.4f}, "
if args.DA != 'none':
info_str += f"average epoch DA loss = {epoch_DA_losses.mean():.4f}, "
logging.info(info_str)
# Compute recalls on validation set
if args.separate_branch:
recalls, recalls_str = test.test(args, val_ds, model, model_db)
else:
recalls, recalls_str = test.test(args, val_ds, model)
logging.info(f"Recalls on val set {val_ds}: {recalls_str}")
is_best = recalls[1] > best_r5
# Save checkpoint, which contains all training parameters
util.save_checkpoint(
args,
{
"epoch_num": epoch_num,
"model_state_dict": model.state_dict(),
"model_db_state_dict": model_db.state_dict() if args.separate_branch else None,
"DA_state_dict": domain_classifier.state_dict() if domain_classifier is not None else None,
"optimizer_state_dict": optimizer.state_dict(),
"recalls": recalls,
"best_r5": best_r5,
"not_improved_num": not_improved_num,
},
is_best,
filename="last_model.pth",
)
if args.DA != 'none':
wandb.log({
"epoch_num": epoch_num,
"recall1": recalls[0],
"recall5": recalls[1],
"best_r5": recalls[1] if is_best else best_r5,
"sum_loss": epoch_losses.mean(),
"triplet loss": epoch_triplet_losses.mean(),
"DA loss": epoch_DA_losses.mean()
},)
else:
wandb.log({
"epoch_num": epoch_num,
"recall1": recalls[0],
"recall5": recalls[1],
"best_r5": recalls[1] if is_best else best_r5,
"sum_loss": epoch_losses.mean(),
"triplet loss": epoch_triplet_losses.mean(),
"DA loss": 0
},)
# If recall@5 did not improve for "many" epochs, stop training
if is_best:
logging.info(
f"Improved: previous best R@5 = {best_r5:.1f}, current R@5 = {recalls[1]:.1f}"
)
best_r5 = recalls[1]
not_improved_num = 0
else:
not_improved_num += 1
logging.info(
f"Not improved: {not_improved_num} / {args.patience}: best R@5 = {best_r5:.1f}, current R@5 = {recalls[1]:.1f}"
)
if not_improved_num >= args.patience:
logging.info(
f"Performance did not improve for {not_improved_num} epochs. Stop training."
)
break
logging.info(f"Best R@5: {best_r5:.1f}")
logging.info(
f"Trained for {epoch_num+1:02d} epochs, in total in {str(datetime.now() - start_time)[:-7]}"
)
# Test best model on test set
best_model_state_dict = torch.load(join(args.save_dir, "best_model.pth"))[
"model_state_dict"
]
model.load_state_dict(best_model_state_dict)
if args.separate_branch:
best_model_db_state_dict = torch.load(join(args.save_dir, "best_model.pth"))[
"model_db_state_dict"
]
model_db.load_state_dict(best_model_db_state_dict)
if args.separate_branch:
recalls, recalls_str = test.test(
args, test_ds, model, model_db=model_db, test_method=args.test_method)
else:
recalls, recalls_str = test.test(
args, test_ds, model, model_db=model, test_method=args.test_method)
wandb.log({
"final_recall1": recalls[0],
"final_recall5": recalls[1],
},)
logging.info(f"Recalls on {test_ds}: {recalls_str}")