-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain_pix2pix.py
194 lines (165 loc) · 6.54 KB
/
train_pix2pix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
from model.sync_batchnorm import convert_model
from model import network
import datasets_ws
import commons
import parser
import test
import util
import math
import torch
import logging
import numpy as np
from tqdm import tqdm
import torch.nn as nn
import multiprocessing
from os.path import join
from datetime import datetime
import torchvision.transforms as transforms
from torch.utils.data.dataloader import DataLoader
import wandb
from uuid import uuid4
torch.backends.cudnn.benchmark = True # Provides a speedup
VISUAL_IMAGE_NUM = 10
def train_loop(args, model, train_ds, loop_num):
global epoch_losses_GAN, epoch_losses_AUX
logging.debug(f"Cache: {loop_num} / {loops_num}")
# Compute pairs to use in the pair loss
train_ds.is_inference = True
train_ds.compute_pairs(args)
train_ds.is_inference = False
pairs_dl = DataLoader(
dataset=train_ds,
num_workers=args.num_workers,
batch_size=args.train_batch_size,
pin_memory=(args.device == "cuda"),
drop_last=True,
)
model.netG = model.netG.train()
model.netD = model.netD.train()
# images shape: (train_batch_size*12)*3*H*W ; by default train_batch_size=4, H=512, W=512
# pairs_local_indexes shape: (train_batch_size*10)*3 ; because 10 pairs per query
for query, database, _, _ in tqdm(pairs_dl, ncols=100):
# Compute features of all images (images contains queries, positives and negatives)
model.set_input(database, query)
model.optimize_parameters()
loss_GAN = model.loss_G_GAN
loss_AUX = model.loss_G_L1
# Keep track of all losses by appending them to epoch_losses
batch_loss_GAN = loss_GAN.item()
epoch_losses_GAN = np.append(epoch_losses_GAN, batch_loss_GAN)
batch_loss_AUX = loss_AUX.item()
epoch_losses_AUX = np.append(epoch_losses_AUX, batch_loss_AUX)
debug_str = f"Epoch[{epoch_num:02d}]({loop_num}/{loops_num}): "+ \
f"current batch sum GAN loss = {batch_loss_GAN:.4f}, "+ \
f"average epoch sum GAN loss = {epoch_losses_GAN.mean():.4f}, "+ \
f"current batch sum AUX loss = {batch_loss_AUX:.4f}, "+ \
f"average epoch sum AUX loss = {epoch_losses_AUX.mean():.4f}, "
logging.debug(debug_str)
# Initial setup: parser, logging...
args = parser.parse_arguments()
start_time = datetime.now()
args.save_dir = join(
"logs",
args.save_dir,
f"{args.dataset_name}-{start_time.strftime('%Y-%m-%d_%H-%M-%S')}-{uuid4()}",
)
commons.setup_logging(args.save_dir)
commons.make_deterministic(args.seed)
logging.info(f"Arguments: {args}")
wandb.init(project="VTLG", entity="xjh19971", config=vars(args))
logging.info(f"The outputs are being saved in {args.save_dir}")
logging.info(
f"Using {torch.cuda.device_count()} GPUs and {multiprocessing.cpu_count()} CPUs"
)
# Creation of Datasets
logging.debug(
f"Loading dataset {args.dataset_name} from folder {args.datasets_folder}")
train_ds = None
train_ds = datasets_ws.TranslationDataset(
args, args.datasets_folder, args.dataset_name, "train", clean_black_region=True)
logging.info(f"Train query set: {train_ds}")
val_ds = datasets_ws.TranslationDataset(
args, args.datasets_folder, args.dataset_name, "val", clean_black_region=False)
logging.info(f"Val set: {val_ds}")
test_ds = datasets_ws.TranslationDataset(
args, args.datasets_folder, args.dataset_name, "test", clean_black_region=False)
logging.info(f"Test set: {test_ds}")
# Initialize model
if args.G_gray:
model = network.pix2pix(args, 3, 1, for_training=True)
else:
model = network.pix2pix(args, 3, 3, for_training=True)
model.setup()
# Resume model, optimizer, and other training parameters
if args.resume:
(
model,
_,
best_psnr,
start_epoch_num,
not_improved_num,
) = util.resume_train(args, model)
logging.info(
f"Resuming from epoch {start_epoch_num} with best PSNR {best_psnr:.1f}",
)
else:
best_psnr = start_epoch_num = not_improved_num = 0
# Training loop
for epoch_num in range(start_epoch_num, args.epochs_num):
logging.info(f"Start training epoch: {epoch_num:02d}")
epoch_start_time = datetime.now()
epoch_losses_GAN = np.zeros((0, 1), dtype=np.float32)
epoch_losses_AUX = np.zeros((0, 1), dtype=np.float32)
# How many loops should an epoch last (default is 5000/1000=5)
loops_num = math.ceil(args.queries_per_epoch / args.cache_refresh_rate)
model.update_learning_rate() # Update the learning rate at the beginning
for loop_num in range(loops_num):
train_loop(args, model, train_ds, loop_num)
for loop_num in range(loops_num):
train_loop(args, model, val_ds, loop_num)
info_str = f"Finished epoch {epoch_num:02d} in {str(datetime.now() - epoch_start_time)[:-7]}, "+ \
f"average epoch sum GAN loss = {epoch_losses_GAN.mean():.4f}, "+ \
f"average epoch sum AUX loss = {epoch_losses_AUX.mean():.4f}, "
logging.info(info_str)
if args.GAN_save_freq != 0 and epoch_num % args.GAN_save_freq == 0:
visual_current = True
else:
visual_current = False
if visual_current:
_, _ = test.test_translation_pix2pix(args, val_ds, model, visual_current, visual_image_num=VISUAL_IMAGE_NUM, epoch_num=epoch_num)
wandb.log({
"epoch_num": epoch_num,
"GAN_loss": epoch_losses_GAN.mean(),
"AUX_loss": epoch_losses_AUX.mean(),
},)
# Save checkpoint, which contains all training parameters
util.save_checkpoint(
args,
{
"epoch_num": epoch_num,
"model_netD_state_dict": model.netD.state_dict(),
"model_netG_state_dict": model.netG.state_dict(),
"optimizer_netD_state_dict": model.optimizer_D.state_dict(),
"optimizer_netG_state_dict": model.optimizer_G.state_dict(),
"not_improved_num": not_improved_num,
},
False,
filename="last_model.pth",
)
if args.GAN_save_freq != 0 and epoch_num % args.GAN_save_freq == 0:
util.save_checkpoint(
args,
{
"epoch_num": epoch_num,
"model_netD_state_dict": model.netD.state_dict(),
"model_netG_state_dict": model.netG.state_dict(),
"optimizer_netD_state_dict": model.optimizer_D.state_dict(),
"optimizer_netG_state_dict": model.optimizer_G.state_dict(),
"not_improved_num": not_improved_num,
},
False,
filename=f"last_model_{epoch_num}.pth"
)
logging.info(
f"Trained for {epoch_num+1:02d} epochs, in total in {str(datetime.now() - start_time)[:-7]}"
)