-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdefault.yaml
54 lines (48 loc) · 3.01 KB
/
default.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
evaluation:
data_dirs: null # List of Paths
output_dir: null # output filename is output_dir / experiment_name
experiment_name: null
split_groups: false # {True, False, [param.a, param.b, ...]} create additional plots where the data is grouped by the given parameter; True to detect all params with multiple unique values
aggregate_groups: # groups over which to aggregate values and compute mean/std. Default: [engine.seed]
- engine.seed
depth: 1 # the depth of the trial dirs relative to the given data_dirs
checkpoints: [best, last] # which model checkpoint to use
output_types: [pdf, png, csv] # choose all you want from {csv, pdf, png} and put it in brackets
verbose: False # debug prints
column_split_key: optimizer.name # if set, will split the dataframe and plot it in columns. Default: optimizer.name
column_split_order: null # sets the order in which the columns are plotted.
# keeping the values on null -> automatically figure it out if possible, or let matplotlib decide
plot:
x_axis: # indices on x axis (same order as order of subigures given in data_dirs)
- optimizer.weight_decay
y_axis: # indices on y axis (same order as order of subigures given in data_dirs)
- optimizer.learning_rate
metric: null # is automatically chosen from task name, this will overwrite it
limits: null # sets the limits for the colormap, 2 ints, order does not matter, leave empty for automatic
std: True # show std over aggregated values
aggfunc: std # for example {std, var, sem} which function to use to aggregate over the seeds; will only be used when 'std' is set to true
# format:
# string, how many digits to display, expects two values seperated by a dot (e.g. "2.3")
# to make accuracy -> percent use a '2' in front of the dot
# to display 3 digits after the decimal point, write a '3' behind the dot
format: null # for example {"2.0", "2.1", "2.3", "0.2", ...}
single_file: true # if true, save all heatmaps in one file. 'split_groups' are represented as rows.
plotstyle:
tight_layout: True
text:
usetex: True # you can give latex code in the yaml: $\sqrt{\pi \cdot \sigma}$ but some cluster dont have it installed# the font in the tiles of the matrix
# general font
font:
family: "serif" # matplotlib {serif, sans-serif, cursive, fantasy, monospace}
size: 14
# the font in the tiles of the matrix
matrix_font:
size: 12
scale: 1.0 # scales *figsize* argument by this value, useful for ".png"
color_palette: "rocket"
dpi: 300
# the name of the files storing the hyperparameters of the experiments and the scores
experiment_files:
best_model: results_best_model.json
last_model: results_final_model.json
config: config.yaml