-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathpytorch7.py
43 lines (32 loc) · 1.29 KB
/
pytorch7.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#over a period of time as data gets bigger and bigger
# we should divide the data into batches as a performance enhancer
# we go one batch at a time calculate the gradient and update
# 1000 training examples
# batch size 500
# so it will take 2 iterations to complete 1 epoch
# so DATALOADER in pytorch will handle this issue for us
import torch
import numpy as np
from torch.autograd import Variable
from torch.utils.data import Dataset, DataLoader
class DiabetesDataset(Dataset):
def __init__(self):
xy = np.loadtxt('diabetes.csv',
delimiter=',', dtype=np.float32)
self.len = xy.shape[0]
self.x_data = torch.from_numpy(xy[:, 0:-1])
self.y_data = torch.from_numpy(xy[:, [-1]])
def __getitem__(self, index):
return self.x_data[index], self.y_data[index]
def __len__(self):
return self.len
dataset = DiabetesDataset()
train_loader = DataLoader(dataset=dataset,
batch_size=32,
shuffle=True,
num_workers=2)
for epoch in range(2):
for i, data in enumerate(train_loader, 0):
inputs, labels = data
inputs, labels = Variable(inputs), Variable(labels)
print(epoch, i, "inputs", inputs.data, "labels", labels.data)