-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathlearnChart.py
166 lines (141 loc) · 5.64 KB
/
learnChart.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# script to learn the language chart
# author: satwik kottur
import json, os, sys, pdb, subprocess
from tqdm import tqdm as progressbar
from collections import defaultdict
# segregrate json files
def separateJSON(listing):
jsonFiles = [fileName for fileName in listing if 'json' in fileName];
# arrange based on the epoch
if len(jsonFiles) > 0:
getEpoch = lambda x: int(x.strip('.json').split('_')[-1])
sortedOrder = sorted(jsonFiles, key=getEpoch);
return sortedOrder;
else: return False;
# create json
def createJSON(folderPath, listing):
print('Creating JSON files: ' + folderPath);
commandFmt = 'python test.py %s';
for fileName in listing:
subprocess.call(commandFmt % (folderPath + fileName), shell=True);
# compute accuracy
def computeAccuracy(jsonPath):
with open(jsonPath, 'r') as fileId: data = json.load(fileId);
# number of instances
numInst = len(data);
# number of correct
numCorrect = len([ii for ii in data if ii['pred'] == ii['gt']]);
accuracy = (100 * float(numCorrect)/numInst);
return accuracy;
#print('Accuracy: %f' % (100 * float(numCorrect)/numInst))
# building the dialog tree
def buildDialogTree(jsonPath):
with open(jsonPath, 'r') as fileId: data = json.load(fileId);
# figure out the vocab sizes
qChat = [item for ii in data for item in ii['chat'][::2]];
aChat = [item for ii in data for item in ii['chat'][1::2]];
qVocab = len(set(qChat));
aVocab = len(set(aChat));
# dictionary of conversations and (image, task)
tree = defaultdict(set);
for datum in data:
imageTask = tuple(datum['image'] + datum['task']);
chat = datum['chat'];
# add four levels
tree[tuple(chat[0:1])].add(imageTask);
tree[tuple(chat[0:2])].add(imageTask);
tree[tuple(chat[0:3])].add(imageTask);
tree[tuple(chat)].add(imageTask);
return tree;
# check for language chart trends
def obtainLanguageChart(forest):
trends = [];
for pos in forest[-1].keys():
current = forest[0][pos];
currentId = 0;
for treeId, tree in enumerate(forest):
#if tree[pos] != current:
# one has to be a subset of another
if not tree[pos].issubset(current) and not current.issubset(tree[pos]):
currentId = treeId;
current = tree[pos];
# print if there is a trend
if currentId != len(forest):
if len(forest[currentId][pos]) == 0: continue;
if len(forest[-1][pos]) == 0: continue;
# Check for attributes common among the nodes
finalMembers = forest[-1][pos];
trend = set.intersection(*[set(ii) for ii in finalMembers]);
trends.append((currentId, pos, trend))
trends = sorted(trends, key=lambda x:x[0]);
for trend in trends:
print('\nTrend found [%d / %d]:' % (trend[0], len(forest))),
print(trend[1])
print(trend[2])
# check for language chart trends
def backtrackLanguageChart(forest):
trends = [];
tasks = {};
for pos in forest[-1].keys():
final = forest[-1][pos];
if len(final) == 0: continue;
trend = set.intersection(*[set(ii) for ii in final]);
#print(trend, pos)
# Go backward in time and check for purity
learntEpoch = None;
startEpoch = 0;
for treeId, tree in enumerate(forest[::-1]):
# find the start epoch
# node should be pure
if len(tree[pos]) == 0:
if learntEpoch is None: learntEpoch = len(forest) - treeId;
startEpoch = len(forest) - treeId;
break;
else: curTrend = set.intersection(*[set(ii) for ii in tree[pos]]);
if curTrend != trend:
if learntEpoch is None: learntEpoch = len(forest) - treeId;
# figure out number of members following trend
# go back until at least one of the member has this trend
if learntEpoch == None: continue;
members = [trend.issubset(set(ii)) for ii in tree[pos]];
if sum(members) == 0:
startEpoch = len(forest) - treeId;
break;
trends.append((learntEpoch, startEpoch, pos, list(trend)));
trends = sorted(trends, key=lambda x:x[0]);
# save as json file
savePath = 'trend-dump.json';
print('Saving trends: ' + savePath)
with open(savePath, 'w') as fileId: json.dump(trends, fileId);
for trend in trends:
# print only 2 or 3 attribute
if len(trend[2]) > 3: continue;
try: print('[%d - %d / %d]:' % (trend[1], trend[0], len(forest))),
except: pdb.set_trace();
print(trend[2]),
print(trend[3])
#-------------------------------------------------------------------------
if __name__ == '__main__':
if len(sys.argv) < 2:
print('Wrong usage!')
print('python <folder>')
sys.exit(0);
folderPath = sys.argv[1];
print('Searching folder: ' + folderPath);
folderPath = folderPath.strip('/') + '/'; #sanitize
listing = os.listdir(folderPath);
jsonFiles = separateJSON(listing);
# Create json files
if not jsonFiles: createJSON(folderPath, listing);
# read again
jsonFiles = separateJSON(listing);
# consider only the train json
jsonFiles = [folderPath + ii for ii in jsonFiles if 'train' in ii];
# print accuracies
#print([computeAccuracy(ii) for ii in jsonFiles]);
# build the forest
forest = [buildDialogTree(ii) for ii in jsonFiles];
# check for consistencies across time
#obtainLanguageChart(forest);
# backtrack language chart
backtrackLanguageChart(forest);