forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fft.cpp
129 lines (108 loc) · 4.23 KB
/
fft.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
#include <gtest/gtest.h>
#include <torch/torch.h>
#include <test/cpp/api/support.h>
// Naive DFT of a 1 dimensional tensor
torch::Tensor naive_dft(torch::Tensor x, bool forward=true) {
TORCH_INTERNAL_ASSERT(x.dim() == 1);
x = x.contiguous();
auto out_tensor = torch::zeros_like(x);
const int64_t len = x.size(0);
// Roots of unity, exp(-2*pi*j*n/N) for n in [0, N), reversed for inverse transform
std::vector<c10::complex<double>> roots(len);
const auto angle_base = (forward ? -2.0 : 2.0) * M_PI / len;
for (int64_t i = 0; i < len; ++i) {
auto angle = i * angle_base;
roots[i] = c10::complex<double>(std::cos(angle), std::sin(angle));
}
const auto in = x.data_ptr<c10::complex<double>>();
const auto out = out_tensor.data_ptr<c10::complex<double>>();
for (int64_t i = 0; i < len; ++i) {
for (int64_t j = 0; j < len; ++j) {
out[i] += roots[(j * i) % len] * in[j];
}
}
return out_tensor;
}
// NOTE: Visual Studio and ROCm builds don't understand complex literals
// as of August 2020
TEST(FFTTest, fft) {
auto t = torch::randn(128, torch::kComplexDouble);
auto actual = torch::fft::fft(t);
auto expect = naive_dft(t);
ASSERT_TRUE(torch::allclose(actual, expect));
}
TEST(FFTTest, fft_real) {
auto t = torch::randn(128, torch::kDouble);
auto actual = torch::fft::fft(t);
auto expect = torch::fft::fft(t.to(torch::kComplexDouble));
ASSERT_TRUE(torch::allclose(actual, expect));
}
TEST(FFTTest, fft_pad) {
auto t = torch::randn(128, torch::kComplexDouble);
auto actual = torch::fft::fft(t, 200);
auto expect = torch::fft::fft(torch::constant_pad_nd(t, {0, 72}));
ASSERT_TRUE(torch::allclose(actual, expect));
actual = torch::fft::fft(t, 64);
expect = torch::fft::fft(torch::constant_pad_nd(t, {0, -64}));
ASSERT_TRUE(torch::allclose(actual, expect));
}
TEST(FFTTest, fft_norm) {
auto t = torch::randn(128, torch::kComplexDouble);
// NOLINTNEXTLINE(bugprone-argument-comment)
auto unnorm = torch::fft::fft(t, /*n=*/{}, /*axis=*/-1, /*norm=*/{});
// NOLINTNEXTLINE(bugprone-argument-comment)
auto norm = torch::fft::fft(t, /*n=*/{}, /*axis=*/-1, /*norm=*/"forward");
ASSERT_TRUE(torch::allclose(unnorm / 128, norm));
// NOLINTNEXTLINE(bugprone-argument-comment)
auto ortho_norm = torch::fft::fft(t, /*n=*/{}, /*axis=*/-1, /*norm=*/"ortho");
ASSERT_TRUE(torch::allclose(unnorm / std::sqrt(128), ortho_norm));
}
TEST(FFTTest, ifft) {
auto T = torch::randn(128, torch::kComplexDouble);
auto actual = torch::fft::ifft(T);
auto expect = naive_dft(T, /*forward=*/false) / 128;
ASSERT_TRUE(torch::allclose(actual, expect));
}
TEST(FFTTest, fft_ifft) {
auto t = torch::randn(77, torch::kComplexDouble);
auto T = torch::fft::fft(t);
ASSERT_EQ(T.size(0), 77);
ASSERT_EQ(T.scalar_type(), torch::kComplexDouble);
auto t_round_trip = torch::fft::ifft(T);
ASSERT_EQ(t_round_trip.size(0), 77);
ASSERT_EQ(t_round_trip.scalar_type(), torch::kComplexDouble);
ASSERT_TRUE(torch::allclose(t, t_round_trip));
}
TEST(FFTTest, rfft) {
auto t = torch::randn(129, torch::kDouble);
auto actual = torch::fft::rfft(t);
auto expect = torch::fft::fft(t.to(torch::kComplexDouble)).slice(0, 0, 65);
ASSERT_TRUE(torch::allclose(actual, expect));
}
TEST(FFTTest, rfft_irfft) {
auto t = torch::randn(128, torch::kDouble);
auto T = torch::fft::rfft(t);
ASSERT_EQ(T.size(0), 65);
ASSERT_EQ(T.scalar_type(), torch::kComplexDouble);
auto t_round_trip = torch::fft::irfft(T);
ASSERT_EQ(t_round_trip.size(0), 128);
ASSERT_EQ(t_round_trip.scalar_type(), torch::kDouble);
ASSERT_TRUE(torch::allclose(t, t_round_trip));
}
TEST(FFTTest, ihfft) {
auto T = torch::randn(129, torch::kDouble);
auto actual = torch::fft::ihfft(T);
auto expect = torch::fft::ifft(T.to(torch::kComplexDouble)).slice(0, 0, 65);
ASSERT_TRUE(torch::allclose(actual, expect));
}
TEST(FFTTest, hfft_ihfft) {
auto t = torch::randn(64, torch::kComplexDouble);
t[0] = .5; // Must be purely real to satisfy hermitian symmetry
auto T = torch::fft::hfft(t, 127);
ASSERT_EQ(T.size(0), 127);
ASSERT_EQ(T.scalar_type(), torch::kDouble);
auto t_round_trip = torch::fft::ihfft(T);
ASSERT_EQ(t_round_trip.size(0), 64);
ASSERT_EQ(t_round_trip.scalar_type(), torch::kComplexDouble);
ASSERT_TRUE(torch::allclose(t, t_round_trip));
}