-
Notifications
You must be signed in to change notification settings - Fork 194
/
Copy pathinference_comparison.py
159 lines (143 loc) · 5.61 KB
/
inference_comparison.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
###
# This script will generate images for the same seed/prompt across many models and stitch the outputs together.
###
from diffusers import AutoPipelineForText2Image
from torch import manual_seed, float16
import os
from PIL import Image, ImageDraw, ImageFont
from helpers.prompts import prompts
# Define your pipelines and settings in a list of dictionaries
pipelines_info = [
{
"label": "velocity-v1",
"pretrained_model": "ptx0/terminus-xl-velocity-v1",
"settings": {
"guidance_scale": 8.0,
"guidance_rescale": 0.7,
"num_inference_steps": 30,
"negative_prompt": "blurry, cropped, ugly, upscaled",
},
},
{
"label": "gamma-v1",
"pretrained_model": "ptx0/terminus-xl-gamma-v1",
"settings": {
"guidance_scale": 8.0,
"guidance_rescale": 0.7,
"num_inference_steps": 30,
"negative_prompt": "blurry, cropped, ugly, upscaled",
},
},
{
"label": "gamma-v2",
"pretrained_model": "ptx0/terminus-xl-gamma-v2",
"settings": {
"guidance_scale": 8.0,
"guidance_rescale": 0.7,
"num_inference_steps": 30,
"negative_prompt": "blurry, cropped, ugly, upscaled",
},
},
{
"label": "otaku-v1",
"pretrained_model": "ptx0/terminus-xl-otaku-v1",
"settings": {
"guidance_scale": 8.0,
"guidance_rescale": 0.7,
"num_inference_steps": 30,
"negative_prompt": "blurry, cropped, ugly, upscaled",
},
},
{
"label": "gamma-training",
"pretrained_model": "ptx0/terminus-xl-gamma-training",
"settings": {
"guidance_scale": 8.0,
"guidance_rescale": 0.7,
"num_inference_steps": 30,
"negative_prompt": "blurry, cropped, ugly, upscaled",
},
},
{
"label": "gamma-v2-1",
"pretrained_model": "ptx0/terminus-xl-gamma-v2-1",
"settings": {
"guidance_scale": 8.0,
"guidance_rescale": 0.7,
"num_inference_steps": 30,
"negative_prompt": "blurry, cropped, ugly, upscaled",
},
},
# {"label": "v2.1+LoRA", "pretrained_model": "ptx0/terminus-xl-gamma-v2-1", "lora": {"weights": "ptx0/simpletuner-lora-test", "weight_name": "pytorch_lora_weights.safetensors"}, "settings": {"guidance_scale": 8.0, "guidance_rescale": 0.7, "num_inference_steps": 30, "negative_prompt": "blurry, cropped, ugly, upscaled"}},
]
def combine_and_label_images(images_info, output_path):
# Assume images_info is a list of tuples: (Image object, label)
# Initial setup based on the first image dimensions and number of images
label_height = 45
total_width = sum(image.width for image, _ in images_info)
max_height = max(image.height for image, _ in images_info) + label_height
combined_image = Image.new("RGB", (total_width, max_height), "white")
# Combine images and labels
current_x = 0
for image, label in images_info:
combined_image.paste(image, (current_x, label_height))
current_x += image.width
# Adding labels using a uniform method for text placement
draw = ImageDraw.Draw(combined_image)
try:
# Attempt to use a specific font
font = ImageFont.truetype(
".venv/lib/python3.11/site-packages/cv2/qt/fonts/DejaVuSans.ttf", 40
) # Adjust font path and size
except IOError:
# Fallback to default font
font = ImageFont.load_default()
current_x = 0
for _, label in images_info:
draw.text((current_x + 10, 2), label, fill="black", font=font)
current_x += image.width
combined_image.save(output_path)
# Processing pipelines
base_pipeline = AutoPipelineForText2Image.from_pretrained(
"ptx0/terminus-xl-gamma-v2", torch_dtype=float16
).to("cuda")
text_encoder_1 = base_pipeline.components["text_encoder"]
text_encoder_2 = base_pipeline.components["text_encoder_2"]
vae = base_pipeline.components["vae"]
for shortname, prompt in prompts.items():
print(f"Processing: {shortname}")
target_dir = f"inference/images/{shortname}"
# Does the combined image exist? Skip it then.
if os.path.exists(f"{target_dir}/combined_image.png"):
continue
os.makedirs(target_dir, exist_ok=True)
images_info = []
for pipeline_info in pipelines_info:
image_path = f'{target_dir}/image-{pipeline_info["label"].replace("+", "plus").lower()}.png'
if os.path.exists(image_path):
continue
# Initialize pipeline
pipeline = AutoPipelineForText2Image.from_pretrained(
pipeline_info["pretrained_model"],
text_encoder=text_encoder_1,
text_encoder_2=text_encoder_2,
vae=vae,
torch_dtype=float16,
).to("cuda")
# Load LoRA weights if specified
if "lora" in pipeline_info:
pipeline.load_lora_weights(
pipeline_info["lora"]["weights"],
weight_name=pipeline_info["lora"]["weight_name"],
)
# Generate image with specified settings
settings = pipeline_info.get("settings", {})
image = pipeline(prompt, generator=manual_seed(420420420), **settings).images[0]
# Unload LoRA weights if they were loaded
if "lora" in pipeline_info:
pipeline.unload_lora_weights()
del pipeline
image.save(image_path, format="PNG")
images_info.append((image, pipeline_info["label"]))
# Combine and label images
combine_and_label_images(images_info, f"{target_dir}/combined_image.png")