Skip to content

Releases: bghira/SimpleTuner

v1.0.1

14 Sep 18:45
a5ca5a2
Compare
Choose a tag to compare

This is a maintenance release with not many new features.

What's Changed

New Contributors

Full Changelog: v1.0...v1.0.1

v1.0 the total recall edition

02 Sep 20:57
bebcbee
Compare
Choose a tag to compare

Everything has changed! And yet, nothing has. Some defaults may. No, will - be different. It's hard to know which ones.

For those who can do so, it's recommended to use configure.py to reconfigure your environment on this new release.

It should go without saying, but for those in the middle of a training run, do not upgrade to this release until you finish.

Refactoring and Enhancements:

  1. Refactor train.py into a Trainer Class:

    • The core logic of train.py has been restructured into a Trainer class, improving modularity and maintainability.
    • Exposes an SDK for reuse elsewhere.
  2. Model Family Unification:

    • References to specific model types (--sd3, --flux, etc.) have been replaced with a unified --model_family argument, streamlining model specification and reducing clutter in configurations.
  3. Configuration System Overhaul:

    • Switched from .env configuration files to JSON (config.json), with multiple backends supporting JSON configuration loading. This allows more flexible and readable configuration management.
    • Updated the configuration loader to auto-detect the best backend when launching.
  4. Enhanced Argument Handling:

    • Deprecated old argument references and moved argument parsing to helpers/configuration/cmd_args.py for better organization.
    • Introduced support for new arguments such as --model_card_safe_for_work, --flux_schedule_shift, and --disable_bucket_pruning.
  5. Improved Hugging Face Integration:

    • Modified configure.py to avoid asking for Hugging Face model name details unless required.
    • Added the ability to pass the SFW (safe-for-work) argument into the training script.
  6. Optimizations and Bug Fixes:

    • Fixed several references to learning rate (lr) initialization and corrected --optimizer usage.
    • Addressed issues with attention masks swapping and fixed the persistence of text encoders in RAM after refactoring.
  7. Training and Validation Enhancements:

    • Added better dataset examples with support for multiple resolutions and mixed configurations.
    • Configured training scripts to disable gradient accumulation steps by default and provided better control over training options via the updated config files.
  8. Enhanced Logging and Monitoring:

    • Improved the handling of Weights & Biases (wandb) logs and updated tracker argument references.
  9. Documentation Updates:

    • Revised documentation to reflect changes in model family handling, argument updates, and configuration management.
    • Added guidance on setting up the new configuration files and examples for multi-resolution datasets.
  10. Miscellaneous Improvements:

    • Enabled support for NSFW tags in model cards enabled by default.
    • Updated train.sh to minimal requirements, reducing complexity and streamlining the training process.

More detailed change log

  • lycoris model card updates by @bghira in #820
  • Generate and store attention masks for T5 for flux by @AmericanPresidentJimmyCarter in #821
  • Fix validation by @AmericanPresidentJimmyCarter in #822
  • backwards-compatible flux embedding cache masks by @bghira in #823
  • merge by @bghira in #824
  • parquet add width and height columns by @frankchieng in #825
  • quanto: remove warnings about int8/fp8 confusion as it happened so long ago now; add warning about int4 by @bghira in #826
  • remove clip warning by @bghira in #827
  • update lycoris to dev branch, 3.0.1dev3 by @bghira in #828
  • Fix caption_with_blip3.py on CUDA by @anhi in #833
  • fix quanto resuming by @bghira in #834
  • lycoris: resume should use less vram now by @bghira in #835
  • (#644) temporarily block training on multi-gpu setup with quanto + PEFT, inform user to go with lycoris instead by @bghira in #837
  • quanto + deepspeed minor fixes for multigpu training by @bghira in #839
  • deepspeed sharding by @bghira in #840
  • fix: only run save full model on main process by @ErwannMillon in #838
  • merge by @bghira in #841
  • clean-up by @bghira in #842
  • follow-up fixes for quanto limitation on multigpu by @bghira in #846
  • merge by @bghira in #850
  • (#851) remove shard merge code on load hook by @bghira in #853
  • csv backend updates by @williamzhuk in #645
  • csv fixes by @bghira in #856
  • add schedulefree optim w/ kahan summation by @bghira in #857
  • merge by @bghira in #858
  • merge by @bghira in #861
  • schedulefree: return to previous stable settings and add a new preset for aggressive training by @bghira in #862
  • fix validation image filename only using resolution from first img, and, unreadable/untypeable parenthesis by @bghira in #863
  • (#519) add side by side comparison with base model by @bghira in #865
  • merge fixes by @bghira in #870
  • (#864) add flux final export for full tune by @bghira in #871
  • wandb gallery mode by @bghira in #872
  • sdxl: dtype inference followup fix by @bghira in #873
  • merge by @bghira in #878
  • combine the vae cache clear logic with bucket rebuild logic by @bghira in #879
  • flux: mobius-style training via augmented guidance scale by @bghira in #880
  • track flux cfg via wandb by @bghira in #881
  • multigpu VAE cache rebuild fixes; random crop auto-rebuild; mobius flux; json backend now renamed to discovery ; wandb guidance tracking by @bghira in #888
  • fixing typo in flux document for preserve_data_backend_cache key by @riffmaster-2001 in #882
  • reintroduce timestep dependent shift as an option during flux training for dev and schnell, disabled by default by @bghira in #892
  • adding SD3 timestep-dependent shift for Flux training by @bghira in #894
  • fix: set optimizer details to empty dict w/ deepspeed by @ErwannMillon in #895
  • fix: make sure wandb_logs is always defined by @ErwannMillon in #896
  • merge by @bghira in #900
  • Dataloader Docs - Correct caption strategy for instance prompt by @barakyo in #902
  • refactor train.py into Trainer class by @bghira in #899
  • Update TRAINER_EXTRA_ARGS for model_family by @barakyo in #903
  • Fix text encoder nuking regression by @mhirki in #906
  • added lokr lycoris init_lora by @flotos in #907
  • Fix Flux schedule shift and add resolution-dependent schedule shift by @mhirki in #905
  • Swap the attention mask location, because Flux swapped text and image… by @AmericanPresidentJimmyCarter in #908
  • support toml, json, env config backend, and multiple config environments by @bghira in #909
  • Add "none" to --report_to argument by @twri in #911
  • Add support for tiny PEFT-based Flux LoRA based on TheLastBen's post on Reddit by @mhirki in #912
  • Update lycoris_config.json.example with working defaults by @mhirki in #918
  • fix constant_with_warmup not being so constant or warming up by @bghira in #919
  • follow-up fix for setting last_epoch by @bghira in #920
  • fix multigpu schedule issue with LR on resume by @bghira in #921
  • multiply the resume state step by the number of GPUs in an attempt to overcome accelerate v0.33 issue by @bghira in #922
  • default to json/toml before the env file in case multigpu is configured by @bghira in #923
  • fix json/toml configs str bool values by @bghira in #924
  • bypass some "helpful" diffusers logic that makes random decisions to run on CPU by @bghira in #925
  • v1.0 merge by @bghira in #910
    *...
Read more

v0.9.3.9 - bugfixes, better defaults

27 Aug 13:50
202c437
Compare
Choose a tag to compare

What's Changed

LyCORIS

  • lycoris model card updates by @bghira in #820
  • lycoris: resume should use less vram now by @bghira in #835
  • update lycoris to dev branch, 3.0.1dev3 by @bghira in #828
  • (#644) temporarily block training on multi-gpu setup with quanto + PEFT, inform user to go with lycoris instead by @bghira in #837

Flux

Misc features

  • add schedulefree optim w/ kahan summation by @bghira in #857
  • schedulefree: return to previous stable settings and add a new preset for aggressive training by @bghira in #862
  • (#519) add side by side comparison with base model by @bghira in #865
  • wandb gallery mode by @bghira in #872
  • combine the vae cache clear logic with bucket rebuild logic by @bghira in #879

Misc bug-fixes

  • parquet add width and height columns by @frankchieng in #825
  • quanto: remove warnings about int8/fp8 confusion as it happened so long ago now; add warning about int4 by @bghira in #826
  • Fix caption_with_blip3.py on CUDA by @anhi in #833
  • quanto + deepspeed minor fixes for multigpu training by @bghira in #839
  • deepspeed sharding fixes by @bghira in #840
  • fix: only run save full model on main process by @ErwannMillon in #838
  • (#851) remove shard merge code on load hook by @bghira in #853
  • csv backend updates by @williamzhuk in #645
  • csv fixes by @bghira in #856
  • fix validation image filename only using resolution from first img, and, unreadable/untypeable parenthesis by @bghira in #863
  • sdxl: dtype inference followup fix by @bghira in #873

New Contributors

Full Changelog: v0.9.8.3.2...v0.9.3.9

v0.9.3.8.2 - 2 releases a day keeps the bugs away

19 Aug 19:23
4f3d545
Compare
Choose a tag to compare

What's Changed

  • fix merged model being exported by accident instead of normal lora safetensors after LyCORIS was introduced by @bghira in #817

Full Changelog: v0.9.8.3.1...v0.9.8.3.2

v0.9.8.3.1 - state dict fix for final resulting safetensors

19 Aug 17:52
3172256
Compare
Choose a tag to compare

Minor, but important - the intermediary checkpoints weren't impacted before, just part of the weights ended up mis-labeled.

What's Changed

  • state dict export for final pipeline by @bghira in #812
  • lycoris: disable text encoder training (it doesn't work here, yet)
  • state dict fix for the final pipeline export after training by @bghira in #813
  • lycoris: final export fix, correctly save weights by @bghira in #814
  • update lycoris doc by @bghira in #815
  • lycoris updates by @bghira in #816

Full Changelog: v0.9.8.3...v0.9.8.3.1

v0.9.8.3 - essential fixes and improvements

18 Aug 22:36
da4bc81
Compare
Choose a tag to compare

What's Changed

that woman you've probably seen so many times!

General

  • Non-BF16 capable optimisers removed in favour of a series of new Optimi options
  • new crop_aspect option closest that uses crop_aspect_buckets as a list of options
  • fewer images are discarded, minimum image size isn't set by default for you any longer
  • better behaviour with mixed datasets, more equally sampling large and small sets
    • caveat dreambooth training now probably wants --data_backend_sampling=uniform instead of auto-weighting
  • multi-caption fixes, it was always using the first caption before (whoops)
  • TF32 now enabled by default for users with configure.py
  • New arguments for --custom_transformer_model_name_or_path to use a flat repository or local dir containing just the transformer model
  • InvernVL captioning script contributed by @frankchieng
  • ability to change constant learning rate on resume
  • fix SDXL controlnet training, allowing it to work with quanto
  • DeepSpeed fixes, caveat broken validations

Flux

  • New LoRA targets ai-toolkit and context-ffs, with context-ffs behaving more like text encoder training
  • New LoRA training resumption support via --init_lora
  • LyCORIS support
  • Novel attention masking implementation via --flux_attention_masked_training thanks to @AmericanPresidentJimmyCarter (#806)
  • Schnell --flux_fast_schedule fixed (still not great)

Pull Requests

New Contributors

Full Changelog: v0.9.8.2...v0.9.8.3

v0.9.8.2 - fixed comfyUI inference, better aspect bucketing limits

15 Aug 06:00
00bf989
Compare
Choose a tag to compare

Main issues solved:

  • Updated quickstart/flux documentation to have newer recommendations.
  • New pixel_area mode for resolution_type reduces guesswork.
  • bfloat16 error
  • comfyUI not reading the LoRAs created this week. that is my fault, it is now back to the way of intiialising adapters we used in the prev release.
    • stick with the latest release tag via git checkout v0.9.8.2 to avoid issues with the main branch creeping up on you in the future, if necessary
  • batch sizes no longer need to be perfectly aligned with the dataset

Thank you for testing the changes and helping make it better.

What's Changed

Full Changelog: v0.9.8.1...v0.9.8.2

v0.9.8.1 - much-improved flux training

11 Aug 05:01
6e6385c
Compare
Choose a tag to compare

image
Dreambooth results from this release

What's Changed

  • Quantised Flux LoRA training (but only non-quantised models can resume training still)
  • More VRAM and System memory use reductions contributed by team and community members
  • CUDA 12.4 requirement bump as well as blacklisting of Python 3.12
  • Dockerfile updates, allowing deployment of the latest build without errors
  • More LoRA training options for Flux Dev
  • Basic (crappy) Schnell training support
  • Support for preserving Flux Dev's distillation or introducing CFG back into the model for improved creativity
    • CFG skip logic to ensure no blurry results on undertrained LoRAs without requiring a CFG-capable base model

Detailed change list

New Contributors

Full Changelog: v0.9.8...v0.9.8.1

v0.9.8 - flux 24 gig training has entered the chat

05 Aug 00:57
Compare
Choose a tag to compare

Flux

image

It's here! Runs on 24G cards using Quanto's 8bit quantisation, or 25.7G on a Macbook system (slowly)!

If you're after accuracy, a 40G card will do Just Fine, with 80G cards being somewhat of a sweet spot for larger training efforts.

What you get:

  • LoRA, full tuning (but probably just don't do that)
  • Documentation to get you started fast
  • Probably better for just square crop training for now - might artifact for weird resolutions
  • Quantised base model unlocking the ability to safely use Adafactor, Prodigy, and other neat optimisers as a consolation prize for losing access to full bf16 training (AdamWBF16 just won't work with Quanto)

What's Changed

  • trainer: simplify check by @bghira in #592
  • documentation updates, apple pytorch 2.4 by @bghira in #595
  • staged storage for image embed support by @bghira in #596
  • fix: loading default image embed backend by @bghira in #597
  • fix: loading default image embed backend by @bghira in #598
  • multi-gpu console output improvements by @bghira in #599
  • vae cache: hash_filenames option for image sets by @bghira in #601
  • multi-gpu console output reduction by @bghira in #602
  • fix for relative cache directories with NoneType being unsubscriptable by @bghira in #603
  • multigpu / relative path fixes for caching by @bghira in #604
  • backend for csv based datasets by @bghira in #600
  • CSV data backend by @bghira in #605
  • config file versioning to allow updating defaults without breaking backwards compat by @bghira in #607
  • config file versioning for backwards compat by @bghira in #608
  • experiment: small DiT model by @bghira in #609
  • merge by @bghira in #610
  • Fix crash when using jsonl files by @swkang-rp in #611
  • merge by @bghira in #612
  • flux training by @bghira in #614
  • update base_dir to output_dir by @bghira in #615
  • merge by @bghira in #616
  • flux: validations should ignore any custom schedulers by @bghira in #618
  • release: flux by @bghira in #617
  • bugfix: correctly set hash_filenames to true or false for an initial dataset creation by @bghira in #620
  • release: minor follow-up fixes by @bghira in #628
  • Flux: Fix random validation errors due to some tensors being on the cpu by @mhirki in #629
  • Improve config support for transformers with accelerate by @touchwolf in #630
  • quanto: exploring low-precision training. by @bghira in #622
  • remove all text encoders from memory correctly by @bghira in #637

New Contributors

  • @swkang-rp made their first contribution in #611
  • @touchwolf made their first contribution in #630

Full Changelog: v0.9.7.8...v0.9.8

v0.9.7.8 - Kwai Kolors

21 Jul 22:14
36754eb
Compare
Choose a tag to compare

What's Changed

Kolors is now a first-class citizen with full training support (no ControlNet).

Full Changelog: v0.9.7.7...v0.9.7.8