forked from scylladb/scylladb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcolumn_computation.hh
94 lines (82 loc) · 3.72 KB
/
column_computation.hh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
/*
* Copyright (C) 2019 ScyllaDB
*/
/*
* This file is part of Scylla.
*
* Scylla is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Scylla is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Scylla. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include "utils/rjson.hh"
#include "bytes.hh"
class schema;
class partition_key;
class clustering_row;
class column_computation;
using column_computation_ptr = std::unique_ptr<column_computation>;
/*
* Column computation represents a computation performed in order to obtain a value for a computed column.
* Computed columns description is also available at docs/system_schema_keyspace.md. They hold values
* not provided directly by the user, but rather computed: from other column values and possibly other sources.
* This class is able to serialize/deserialize column computations and perform the computation itself,
* based on given schema, partition key and clustering row. Responsibility for providing enough data
* in the clustering row in order for computation to succeed belongs to the caller. In particular,
* generating a value might involve performing a read-before-write if the computation is performed
* on more values than are present in the update request.
*/
class column_computation {
public:
virtual ~column_computation() = default;
static column_computation_ptr deserialize(bytes_view raw);
static column_computation_ptr deserialize(const rjson::value& json);
virtual column_computation_ptr clone() const = 0;
virtual bytes serialize() const = 0;
virtual bytes_opt compute_value(const schema& schema, const partition_key& key, const clustering_row& row) const = 0;
};
/*
* Computes token value of partition key and returns it as bytes.
*
* Should NOT be used (use token_column_computation), because ordering
* of bytes is different than ordering of tokens (signed vs unsigned comparison).
*
* The type name stored for computations of this class is "token" - this was
* the original implementation. (now depracated for new tables)
*/
class legacy_token_column_computation : public column_computation {
public:
virtual column_computation_ptr clone() const override {
return std::make_unique<legacy_token_column_computation>(*this);
}
virtual bytes serialize() const override;
virtual bytes_opt compute_value(const schema& schema, const partition_key& key, const clustering_row& row) const override;
};
/*
* Computes token value of partition key and returns it as long_type.
* The return type means that it can be trivially sorted (for example
* if computed column using this computation is a clustering key),
* preserving the correct order of tokens (using signed comparisons).
*
* Please use this class instead of legacy_token_column_computation.
*
* The type name stored for computations of this class is "token_v2".
* (the name "token" refers to the depracated legacy_token_column_computation)
*/
class token_column_computation : public column_computation {
public:
virtual column_computation_ptr clone() const override {
return std::make_unique<token_column_computation>(*this);
}
virtual bytes serialize() const override;
virtual bytes_opt compute_value(const schema& schema, const partition_key& key, const clustering_row& row) const override;
};