- AbsGrad: Uses absolute gradients in the image plane as the criterion for pruning. See this paper for more details.
- Antialiasing: Applies a low pass filter on the projected covariance and scale the opacity accordingly. See this paper for more details. It might slightly hurt the metrics on in-distribution views but seem to improve the visual quality on view out of training distribution.
Garden at 7k steps (TITAN RTX) | T(train) | T(render) | Memory | SSIM | PSNR | LPIPS | #GS. |
---|---|---|---|---|---|---|---|
default args | 7m07s | 0.021s/im | 7.54 GB | 0.8332 | 26.29 | 0.123 | 4.46M |
--absgrad --grow_grad2d 8e-4 |
5m50s | 0.012s/im | 3.80 GB | 0.8365 | 26.44 | 0.121 | 2.17M |
--absgrad --grow_grad2d 8e-4 (30k) |
-- | 0.013s/im | 4.04 GB | 0.8639 | 27.33 | 0.079 | 2.35M |
--antialiased |
6m43s | 0.020s/im | 6.74 GB | 0.8265 | 26.13 | 0.137 | 3.99M |
U1 at 7k steps (RTX 2080 Ti) | T(train) | T(render) | Memory | SSIM | PSNR | LPIPS | #GS. |
---|---|---|---|---|---|---|---|
default args | 7m39s | 0.013s/im | 4.94 GB | 0.6102 | 20.69 | 0.615 | 2.47M |
default args (30k) | -- | 0.019s/im | -- | 0.7518 | 24.67 | 0.385 | 4.18M |
--absgrad --grow_grad2d 8e-4 |
7m16s | 0.011s/im | 3.41 GB | 0.6055 | 20.29 | 0.636 | 1.72M |
--absgrad --grow_grad2d 8e-4 (30k) |
-- | 0.014s/im | 4.15 GB | 0.7494 | 24.65 | 0.390 | 2.37M |
--absgrad --grow_grad2d 6e-4 |
8m58s | 0.011s/im | 4.42 GB | 0.5966 | 19.58 | 0.654 | 2.21M |
--absgrad --grow_grad2d 6e-4 (30k) |
-- | 0.016s/im | 5.09 GB | 0.7439 | 24.28 | 0.400 | 2.92M |
U4 at 7k steps (RTX 2080 Ti) | T(train) | T(render) | Memory | SSIM | PSNR | LPIPS | #GS. |
---|---|---|---|---|---|---|---|
--grow_grad2d 5e-5 |
7m30s | 0.014s/im | 1.68 GB | 0.6271 | 20.86 | 0.583 | 0.61M |
--grow_grad2d 5e-5 (30k) |
-- | 0.026s/im | 4.21 GB | 0.7402 | 24.05 | 0.299 | 2.44M |
--absgrad --grow_grad2d 2e-4 |
8m30s | 0.018s/im | 2.21 GB | 0.6251 | 20.68 | 0.587 | 0.89M |
--absgrad --grow_grad2d 2e-4 (30k) |
-- | 0.030s/im | 5.25 GB | 0.7442 | 24.12 | 0.291 | 2.62M |
Note: default args means running python simple_trainer.py --data_dir <DATA_DIR>
with: