forked from chrisveness/geodesy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvector3d.js
224 lines (186 loc) · 7.26 KB
/
vector3d.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* Vector handling functions (c) Chris Veness 2011-2014 */
/* */
/* These are generic 3-d vector manipulation routines. */
/* */
/* In a geodesy context, these may be used to represent: */
/* - n-vector representing a normal to point on Earth's surface */
/* - earth-centered, earth fixed vector (= n-vector for spherical model) */
/* - great circle normal to vector */
/* - motion vector on Earth's surface */
/* - etc */
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* jshint node:true *//* global define */
'use strict';
/**
* Creates a 3-d vector.
*
* The vector may be normalised, or use x/y/z values for eg height relative to the sphere or
* ellipsoid, distance from earth centre, etc.
*
* @classdesc Tools for manipulating 3-d vectors, to support various latitude/longitude functions.
*
* @constructor
* @param {number} x - X component of vector.
* @param {number} y - Y component of vector.
* @param {number} z - Z component of vector.
*/
function Vector3d(x, y, z) {
// allow instantiation without 'new'
if (!(this instanceof Vector3d)) return new Vector3d(x, y, z);
this.x = Number(x);
this.y = Number(y);
this.z = Number(z);
}
/**
* Adds supplied vector to ‘this’ vector.
*
* @param {Vector3d} v - Vector to be added to this vector.
* @returns {Vector3d} Vector representing sum of this and v.
*/
Vector3d.prototype.plus = function(v) {
return new Vector3d(this.x + v.x, this.y + v.y, this.z + v.z);
};
/**
* Subtracts supplied vector from ‘this’ vector.
*
* @param {Vector3d} v - Vector to be subtracted from this vector.
* @returns {Vector3d} Vector representing difference between this and v.
*/
Vector3d.prototype.minus = function(v) {
return new Vector3d(this.x - v.x, this.y - v.y, this.z - v.z);
};
/**
* Multiplies ‘this’ vector by a scalar value.
*
* @param {number} x - Factor to multiply this vector by.
* @returns {Vector3d} Vector scaled by x.
*/
Vector3d.prototype.times = function(x) {
x = Number(x);
return new Vector3d(this.x * x, this.y * x, this.z * x);
};
/**
* Divides ‘this’ vector by a scalar value.
*
* @param {number} x - Factor to divide this vector by.
* @returns {Vector3d} Vector divided by x.
*/
Vector3d.prototype.dividedBy = function(x) {
x = Number(x);
return new Vector3d(this.x / x, this.y / x, this.z / x);
};
/**
* Multiplies ‘this’ vector by the supplied vector using dot (scalar) product.
*
* @param {Vector3d} v - Vector to be dotted with this vector.
* @returns {number} Dot product of ‘this’ and v.
*/
Vector3d.prototype.dot = function(v) {
return this.x*v.x + this.y*v.y + this.z*v.z;
};
/**
* Multiplies ‘this’ vector by the supplied vector using cross (vector) product.
*
* @param {Vector3d} v - Vector to be crossed with this vector.
* @returns {Vector3d} Cross product of ‘this’ and v.
*/
Vector3d.prototype.cross = function(v) {
var x = this.y*v.z - this.z*v.y;
var y = this.z*v.x - this.x*v.z;
var z = this.x*v.y - this.y*v.x;
return new Vector3d(x, y, z);
};
/**
* Negates a vector to point in the opposite direction
*
* @returns {Vector3d} Negated vector.
*/
Vector3d.prototype.negate = function() {
return new Vector3d(-this.x, -this.y, -this.z);
};
/**
* Length (magnitude or norm) of ‘this’ vector
*
* @returns {number} Magnitude of this vector.
*/
Vector3d.prototype.length = function() {
return Math.sqrt(this.x*this.x + this.y*this.y + this.z*this.z);
};
/**
* Normalizes a vector to its unit vector
* – if the vector is already unit or is zero magnitude, this is a no-op.
*
* @returns {Vector3d} Normalised version of this vector.
*/
Vector3d.prototype.unit = function() {
var norm = this.length();
if (norm == 1) return this;
if (norm == 0) return this;
var x = this.x/norm;
var y = this.y/norm;
var z = this.z/norm;
return new Vector3d(x, y, z);
};
/**
* Calculates the angle between ‘this’ vector and supplied vector.
*
* @param {Vector3d} v
* @param {Vector3d} [vSign] - If supplied (and out of plane of this and v), angle is signed +ve if
* this->v is clockwise looking along vSign, -ve in opposite direction (otherwise unsigned angle).
* @returns {number} Angle (in radians) between this vector and supplied vector.
*/
Vector3d.prototype.angleTo = function(v, vSign) {
var sinθ = this.cross(v).length();
var cosθ = this.dot(v);
if (typeof vSign != 'undefined') {
// use vSign as reference to get sign of sinθ
sinθ = this.cross(v).dot(vSign)<0 ? -sinθ : sinθ;
}
return Math.atan2(sinθ, cosθ);
};
/**
* Rotates ‘this’ point around an axis by a specified angle.
*
* @param {Vector3d} axis - The axis being rotated around.
* @param {number} theta - The angle of rotation (in radians).
* @returns {Vector3d} The rotated point.
*/
Vector3d.prototype.rotateAround = function(axis, theta) {
// en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle
// en.wikipedia.org/wiki/Quaternions_and_spatial_rotation#Quaternion-derived_rotation_matrix
var p1 = this.unit();
var p = [ p1.x, p1.y, p1.z ]; // the point being rotated
var a = axis.unit(); // the axis being rotated around
var s = Math.sin(theta);
var c = Math.cos(theta);
// quaternion-derived rotation matrix
var q = [ [ a.x*a.x*(1-c) + c, a.x*a.y*(1-c) - a.z*s, a.x*a.z*(1-c) + a.y*s],
[ a.y*a.x*(1-c) + a.z*s, a.y*a.y*(1-c) + c, a.y*a.z*(1-c) - a.x*s],
[ a.z*a.x*(1-c) - a.y*s, a.z*a.y*(1-c) + a.x*s, a.z*a.z*(1-c) + c ] ];
// multiply q × p
var qp = [0, 0, 0];
for (var i=0; i<3; i++) {
for (var j=0; j<3; j++) {
qp[i] += q[i][j] * p[j];
}
}
var p2 = new Vector3d(qp[0], qp[1], qp[2]);
return p2;
// qv en.wikipedia.org/wiki/Rodrigues'_rotation_formula...
};
/**
* String representation of vector.
*
* @param {number} [precision=3] - Number of decimal places to be used.
* @returns {string} Vector represented as [x,y,z].
*/
Vector3d.prototype.toString = function(precision) {
if (typeof precision == 'undefined') precision = 3;
var p = Number(precision);
var str = '[' + this.x.toFixed(p) + ',' + this.y.toFixed(p) + ',' + this.z.toFixed(p) + ']';
return str;
};
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
if (typeof module != 'undefined' && module.exports) module.exports = Vector3d; // CommonJS
if (typeof define == 'function' && define.amd) define([], function() { return Vector3d; }); // AMD