forked from andabi/deep-voice-conversion
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain1.py
119 lines (85 loc) · 3.94 KB
/
train1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
# -*- coding: utf-8 -*-
# /usr/bin/python3
import argparse
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import tensorflow as tf
from data_load import get_batch
from models import Model
import eval1
import hparams as hp
def train(logdir, hparams):
model = Model(mode="train1", hparams=hparams)
# Loss
loss_op = model.loss_net1()
# Accuracy
acc_op = model.acc_net1()
# Training Scheme
global_step = tf.Variable(0, name='global_step', trainable=False)
optimizer = tf.train.AdamOptimizer(learning_rate=hparams.Train1.lr)
with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'net/net1')
train_op = optimizer.minimize(loss_op, global_step=global_step, var_list=var_list)
# Summary
# for v in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'net/net1'):
# tf.summary.histogram(v.name, v)
tf.summary.scalar('net1/train/loss', loss_op)
tf.summary.scalar('net1/train/acc', acc_op)
summ_op = tf.summary.merge_all()
#session_conf = tf.ConfigProto(
# gpu_options=tf.GPUOptions(
# allow_growth=True,
# ),
#)
session_conf=tf.ConfigProto()
session_conf.gpu_options.per_process_gpu_memory_fraction=0.9
# Training
with tf.Session(config=session_conf) as sess:
# Load trained model
sess.run(tf.global_variables_initializer())
model.load(sess, 'train1', logdir=logdir)
writer = tf.summary.FileWriter(logdir, sess.graph)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
for epoch in range(1, hparams.Train1.num_epochs + 1):
for step in range(model.num_batch):
mfcc, ppg = get_batch(model.mode, model.batch_size)
sess.run(train_op, feed_dict={model.x_mfcc: mfcc, model.y_ppgs: ppg})
# Write checkpoint files at every epoch
summ, gs = sess.run([summ_op, global_step], feed_dict={model.x_mfcc: mfcc, model.y_ppgs: ppg})
if epoch % hparams.Train1.save_per_epoch == 0:
tf.train.Saver().save(sess, '{}/epoch_{}_step_{}'.format(logdir, epoch, gs))
# Write eval accuracy at every epoch
with tf.Graph().as_default():
eval1.eval(logdir=logdir, hparams=hparams)
writer.add_summary(summ, global_step=gs)
writer.close()
coord.request_stop()
coord.join(threads)
def get_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('-case1', type=str, default='default' ,help='experiment case name')
parser.add_argument('-logdir', type=str, default='./logdir' ,help='tensorflow logdir, default: ./logdir')
parser.add_argument('-batch_size', type=int, default=hp.Train1.batch_size,
help='batch size, default {}'.format(hp.Train1.batch_size))
parser.add_argument('-lr', type=float, default=hp.Train1.lr,
help='learning rate, default: {}'.format(hp.Train1.lr) )
parser.add_argument('-num_epochs', type=int, default=hp.Train1.num_epochs,
help='number of epochs, default: {}'.format(hp.Train1.num_epochs) )
parser.add_argument('-save_per_epoch', type=int, default=hp.Train1.save_per_epoch,
help='save model every n epoch, default: {}'.format(hp.Train1.save_per_epoch) )
parser.add_argument('-data_path', type=str, default=hp.Train1.data_path,
help='trainign data path, default: {}'.format(hp.Train1.data_path) )
arguments = parser.parse_args()
return arguments
if __name__ == '__main__':
args = get_arguments()
logdir = '{}/{}/train1'.format(args.logdir, args.case1)
#update hparamas
hp.Train1.batch_size = args.batch_size
hp.Train1.lr = args.lr
hp.Train1.num_epochs = args.num_epochs
hp.Train1.save_per_epoch = args.save_per_epoch
hp.Train1.data_path = args.data_path
train(logdir=logdir, hparams = hp)
print("Done")