-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrag_pipeline.py
490 lines (429 loc) · 23.4 KB
/
rag_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
# Pytorch imports
import torch
# Haystack imports
# noinspection PyPackageRequirements
from haystack import Pipeline
# noinspection PyPackageRequirements
from haystack.components.embedders import SentenceTransformersDocumentEmbedder, SentenceTransformersTextEmbedder
# noinspection PyPackageRequirements
from haystack.components.builders import PromptBuilder
# noinspection PyPackageRequirements
from haystack.components.generators import HuggingFaceLocalGenerator
# noinspection PyPackageRequirements
from haystack.components.rankers import TransformersSimilarityRanker
# noinspection PyPackageRequirements
from haystack.dataclasses import StreamingChunk
from haystack_integrations.components.generators.google_ai import GoogleAIGeminiGenerator
from haystack_integrations.components.retrievers.pgvector import PgvectorEmbeddingRetriever, PgvectorKeywordRetriever
from haystack_integrations.document_stores.pgvector import PgvectorDocumentStore
# noinspection PyPackageRequirements
from haystack.utils import ComponentDevice, Device
# noinspection PyPackageRequirements
from haystack.utils.auth import Secret
# Neo4j imports
from neo4j_haystack import Neo4jDocumentStore, Neo4jEmbeddingRetriever
# Other imports
from typing import Optional, Dict, Any, Union
from pathlib import Path
import generator_model as gen
from enum import Enum
import textwrap
from document_processor import DocumentStoreType
from custom_haystack_components import (MergeResults, DocumentQueryCollector, RetrieverWrapper, print_documents,
QueryComponent, print_debug_results, DocumentStreamer, TextToSpeechLocal,
)
class SearchMode(Enum):
LEXICAL = 1
SEMANTIC = 2
HYBRID = 3
class RagPipeline:
# The amount of text streamed since last newline.
_streamed_text_length: int = 0
def __init__(self,
table_name: str = 'haystack_pgvector_docs',
db_user_name: str = 'postgres',
db_password: str = None,
postgres_host: str = 'localhost',
postgres_port: int = 5432,
db_name: str = 'postgres',
neo4j_url: str = 'bolt://localhost:7687',
generator_model: Union[gen.GeneratorModel, HuggingFaceLocalGenerator, GoogleAIGeminiGenerator] = None,
embedder_model_name: Optional[str] = None,
use_streaming: bool = False,
verbose: bool = False,
llm_top_k: int = 5,
retriever_top_k_docs: int = None,
search_mode: SearchMode = SearchMode.HYBRID,
use_reranker: bool = False,
use_voice: bool = False,
include_outputs_from: Optional[set[str]] = None,
document_store_type: DocumentStoreType = DocumentStoreType.Pgvector,
) -> None:
# streaming_callback function to print to screen
def streaming_callback(chunk: StreamingChunk) -> None:
# Print the content of the chunks but wrap the text after 80 characters
if self._allow_streaming_callback:
RagPipeline._streamed_text_length += len(chunk.content)
if RagPipeline._streamed_text_length < 80 or chunk.content in ['.', ',', ';', ':', '!', '?', ' ', '\n']:
print(chunk.content, end='')
if chunk.content == '\n':
RagPipeline._streamed_text_length = 0
else:
print()
print(chunk.content.strip(), end='')
RagPipeline._streamed_text_length = len(chunk.content)
# Instance variables
self._table_name: str = table_name
self._sentence_embedder: Optional[SentenceTransformersDocumentEmbedder] = None
self._embedder_model_name: Optional[str] = embedder_model_name
self._use_streaming: bool = use_streaming
self._verbose: bool = verbose
self._llm_top_k: int = llm_top_k
self._retriever_top_k: int = max(retriever_top_k_docs or float('-inf'), llm_top_k)
self._include_outputs_from: Optional[set[str]] = include_outputs_from
self._search_mode: SearchMode = search_mode
self._allow_streaming_callback: bool = False
self._use_reranker: bool = use_reranker
# Use voice is only used if you are NOT streaming. Otherwise, it is ignored.
self._use_voice: bool = use_voice
self._document_store_type = document_store_type
self._neo4j_url: str = neo4j_url
self._db_user_name: str = db_user_name
self._db_password: str = db_password
self._db_name: str = db_name
# GPU or CPU
self._has_cuda: bool = torch.cuda.is_available()
self._torch_device: torch.device = torch.device("cuda" if self._has_cuda else "cpu")
self._component_device: ComponentDevice = ComponentDevice(Device.gpu() if self._has_cuda else Device.cpu())
# Passwords and connection strings
if db_password is None:
raise ValueError("Postgres password must be provided")
# PG_CONN_STR="postgresql://USER:PASSWORD@HOST:PORT/DB_NAME
self._postgres_connection_str: str = (f"postgresql://{db_user_name}:{db_password}@"
f"{postgres_host}:{postgres_port}/{db_name}")
self._print_verbose("Initializing document store")
self._document_store: Optional[Union[PgvectorDocumentStore, Neo4jDocumentStore]] = None
self._initialize_document_store()
if self._use_reranker:
# Warmup Reranker model
# https://docs.haystack.deepset.ai/docs/transformerssimilarityranker
# https://medium.com/towards-data-science/reranking-using-huggingface-transformers-for-optimizing-retrieval-in-rag-pipelines-fbfc6288c91f
ranker = TransformersSimilarityRanker(device=self._component_device, top_k=self._llm_top_k,
score_threshold=0.20)
ranker.warm_up()
self._ranker = ranker
# TODO: Fix this with annotations
if generator_model is None:
raise ValueError("Generator model must be provided")
self._generator_model: Optional[Union[gen.GeneratorModel, HuggingFaceLocalGenerator, GoogleAIGeminiGenerator]]
self._generator_model = generator_model
self._generator_model.verbose = self._verbose
# Handle callbacks for streaming if applicable
if self._can_stream() and self._generator_model.streaming_callback is None:
self._generator_model.streaming_callback = streaming_callback
# Default prompt template
# noinspection SpellCheckingInspection
self._prompt_template: str = ( # noqa: E101
"<start_of_turn>user\n"
"Using the information contained in the context where possible, "
"give a comprehensive answer to the question. Pay more attention to passages with "
"higher relevance scores.\n\n"
"Context:\n"
"{% for i in range([documents|count, llm_top_k|int] | min) | reverse %}"
"Relevance Score {{ '%.2f' | format(documents[i].score) }}\n"
"{% if documents[i] is defined %}"
"{{ documents[i].content }}\n"
"{% endif %}\n"
"{% endfor %}End of Context\n\n"
"Question: {{query}}<end_of_turn>\n\n"
"<start_of_turn>model\n"
)
# self._print_verbose("Prompt Template:")
# self._print_verbose(self._prompt_template)
# Declare rag pipeline
self._rag_pipeline: Optional[Pipeline] = None
# Create the RAG pipeline
self._create_rag_pipeline()
@property
def llm_top_k(self) -> int:
return self._llm_top_k
@llm_top_k.setter
def llm_top_k(self, value: int) -> None:
self._llm_top_k = value
self._retriever_top_k = max(self._retriever_top_k or float('-inf'), self._llm_top_k)
self._create_rag_pipeline()
@property
def retriever_top_k(self) -> int:
return self._retriever_top_k
@retriever_top_k.setter
def retriever_top_k(self, value: int) -> None:
self._retriever_top_k = max(self._llm_top_k or float('-inf'), value)
self._create_rag_pipeline()
@property
def sentence_context_length(self) -> Optional[int]:
"""
Get the context length of the sentence embedder model.
Returns:
Optional[int]: The maximum context length of the sentence embedder model, if available.
"""
self._setup_embedder()
if self._sentence_embedder is not None and self._sentence_embedder.embedding_backend is not None:
return self._sentence_embedder.embedding_backend.model.get_max_seq_length()
else:
return None
@property
def sentence_embed_dims(self) -> Optional[int]:
"""
Get the embedding dimensions of the sentence embedder model.
Returns:
Optional[int]: The embedding dimensions of the sentence embedder model, if available.
"""
self._setup_embedder()
if self._sentence_embedder is not None and self._sentence_embedder.embedding_backend is not None:
return self._sentence_embedder.embedding_backend.model.get_sentence_embedding_dimension()
else:
return None
@property
def verbose(self) -> bool:
return self._verbose
@verbose.setter
def verbose(self, value: bool) -> None:
self._verbose = value
if self._generator_model is not None:
self._generator_model.verbose = value
def _print_verbose(self, *args, **kwargs) -> None:
if self._verbose:
print(*args, **kwargs)
def _setup_embedder(self) -> None:
if self._sentence_embedder is None:
if self._embedder_model_name is not None:
self._sentence_embedder = SentenceTransformersTextEmbedder(model=self._embedder_model_name,
device=self._component_device,
trust_remote_code=True)
else:
self._sentence_embedder = SentenceTransformersTextEmbedder(device=self._component_device)
if hasattr(self._sentence_embedder, 'warm_up'):
self._sentence_embedder.warm_up()
def _setup_generator(self) -> None:
# If the generator model has a warm_up method, call it
if hasattr(self._generator_model, 'warm_up'):
self._generator_model.warm_up()
def draw_pipeline(self) -> None:
"""
Draw and save visual representations of the RAG and document conversion pipelines.
"""
self._setup_generator()
if self._rag_pipeline is not None:
self._rag_pipeline.draw(Path("RAG Pipeline.png"))
def _initialize_document_store(self) -> None:
def init_doc_store() -> Union[PgvectorDocumentStore, Neo4jDocumentStore]:
if self._document_store_type == DocumentStoreType.Pgvector:
connection_token: Secret = Secret.from_token(self._postgres_connection_str)
doc_store: PgvectorDocumentStore = PgvectorDocumentStore(
connection_string=connection_token,
table_name=self._table_name,
embedding_dimension=self.sentence_embed_dims,
vector_function="cosine_similarity",
recreate_table=False,
search_strategy="hnsw",
hnsw_recreate_index_if_exists=True,
hnsw_index_name=self._table_name + "_hnsw_index",
keyword_index_name=self._table_name + "_keyword_index",
)
return doc_store
elif self._document_store_type == DocumentStoreType.Neo4j:
# https://haystack.deepset.ai/integrations/neo4j-document-store
doc_store: Neo4jDocumentStore = Neo4jDocumentStore(
url=self._neo4j_url,
username=self._db_user_name,
password=self._db_password,
database=self._db_name,
embedding_dim=self.sentence_embed_dims,
embedding_field="embedding",
index="document-embeddings", # The name of the Vector Index in Neo4j
node_label="Document", # Providing a label to Neo4j nodes which store Documents
recreate_index=False,
)
return doc_store
self._document_store = init_doc_store()
self._print_verbose("Document Count: " + str(self._document_store.count_documents()))
def _can_stream(self) -> bool:
return (self._use_streaming
and self._generator_model is not None
and isinstance(self._generator_model, gen.GeneratorModel)
and hasattr(self._generator_model, 'streaming_callback'))
def generate_response(self, query: str) -> None:
"""
Generate a response to a given query using the RAG pipeline.
Args:
query (str): The input query to process.
"""
print()
print("Generating Response...")
# Prepare inputs for the pipeline
inputs: Dict[str, Any] = {
"query_input": {"query": query, "llm_top_k": self._llm_top_k},
}
# Run the pipeline
if self._can_stream():
# Document streaming and LLM streaming will be handled inside the components
results: Dict[str, Any] = self._rag_pipeline.run(inputs, include_outputs_from=self._include_outputs_from)
print()
print_debug_results(results, self._include_outputs_from, verbose=self._verbose)
else:
results: Dict[str, Any] = self._rag_pipeline.run(inputs, include_outputs_from=self._include_outputs_from)
print()
print_debug_results(results, self._include_outputs_from, verbose=self._verbose)
merged_results = results["merger"]
# Print retrieved documents
print()
self._print_verbose("Retrieved Documents:")
print_documents(merged_results["documents"])
# Print generated response
# noinspection SpellCheckingInspection
print("\nLLM's Response:")
if merged_results["replies"]:
answer: str = merged_results["replies"][0]
print(textwrap.fill(answer, width=80))
else:
print("No response was generated.")
def _create_rag_pipeline(self) -> None:
def doc_collector_completed() -> None:
self._allow_streaming_callback = True
rag_pipeline: Pipeline = Pipeline()
self._setup_embedder()
self._setup_generator()
# Pass query to the query input component
rag_pipeline.add_component("query_input", QueryComponent())
# Connect the query input to the query component if this is a semantic or hybrid search
if self._search_mode == SearchMode.SEMANTIC or self._search_mode == SearchMode.HYBRID:
rag_pipeline.add_component("query_embedder", self._sentence_embedder)
rag_pipeline.connect("query_input.query", "query_embedder.text")
# Add the document query collector component with an inline callback function to specify when completed
# This is an extra way to be sure the LLM doesn't prematurely start calling the streaming callback
doc_collector: DocumentQueryCollector = DocumentQueryCollector(do_stream=self._can_stream(),
callback_func=lambda: doc_collector_completed())
rag_pipeline.add_component("doc_query_collector", doc_collector)
rag_pipeline.connect("query_input.query", "doc_query_collector.query")
rag_pipeline.connect("query_input.llm_top_k", "doc_query_collector.llm_top_k")
# Add the retriever component(s) depending on search mode
if self._search_mode == SearchMode.LEXICAL or self._search_mode == SearchMode.HYBRID \
and self._document_store_type == DocumentStoreType.Pgvector:
lex_retriever: RetrieverWrapper = RetrieverWrapper(
PgvectorKeywordRetriever(document_store=self._document_store, top_k=self._retriever_top_k))
rag_pipeline.add_component("lex_retriever", lex_retriever)
rag_pipeline.connect("query_input.query", "lex_retriever.query")
rag_pipeline.connect("lex_retriever.documents", "doc_query_collector.lexical_documents")
if self._search_mode == SearchMode.SEMANTIC or self._search_mode == SearchMode.HYBRID:
semantic_retriever: RetrieverWrapper
if self._document_store_type == DocumentStoreType.Neo4j:
semantic_retriever = RetrieverWrapper(
Neo4jEmbeddingRetriever(document_store=self._document_store, top_k=self._retriever_top_k))
else:
semantic_retriever = RetrieverWrapper(
PgvectorEmbeddingRetriever(document_store=self._document_store, top_k=self._retriever_top_k))
rag_pipeline.add_component("semantic_retriever", semantic_retriever)
rag_pipeline.connect("query_embedder.embedding", "semantic_retriever.query")
rag_pipeline.connect("semantic_retriever.documents", "doc_query_collector.semantic_documents")
if self._use_reranker:
# Reranker
rag_pipeline.add_component("reranker", self._ranker)
rag_pipeline.connect("doc_query_collector.documents", "reranker.documents")
rag_pipeline.connect("doc_query_collector.query", "reranker.query")
rag_pipeline.connect("doc_query_collector.llm_top_k", "reranker.top_k")
# Stream the reranked documents
rag_pipeline.add_component("reranker_streamer", DocumentStreamer(do_stream=self._can_stream()))
rag_pipeline.connect("reranker.documents", "reranker_streamer.documents")
# Add the prompt builder component
prompt_builder: PromptBuilder = PromptBuilder(template=self._prompt_template)
rag_pipeline.add_component("prompt_builder", prompt_builder)
rag_pipeline.connect("doc_query_collector.query", "prompt_builder.query")
rag_pipeline.connect("doc_query_collector.llm_top_k", "prompt_builder.llm_top_k")
if self._use_reranker:
# Connect the reranker documents to the prompt builder
rag_pipeline.connect("reranker_streamer.documents", "prompt_builder.documents")
else:
# Connect the doc collector documents to the prompt builder
rag_pipeline.connect("doc_query_collector.documents", "prompt_builder.documents")
# Add the LLM component
if isinstance(self._generator_model, gen.GeneratorModel):
rag_pipeline.add_component("llm", self._generator_model.generator_component)
else:
rag_pipeline.add_component("llm", self._generator_model)
if not self._can_stream():
# Add the final merger of documents and llm response only when streaming is disabled
rag_pipeline.add_component("merger", MergeResults())
rag_pipeline.connect("doc_query_collector.documents", "merger.documents")
rag_pipeline.connect("llm.replies", "merger.replies")
# Connect prompt builder to the llm
rag_pipeline.connect("prompt_builder", "llm")
if self._use_voice and not self._can_stream():
# Add the text to speech component
tts_node = TextToSpeechLocal()
rag_pipeline.add_component("tts", tts_node)
rag_pipeline.connect("merger.reply", "tts.reply")
# Set the pipeline instance
self._rag_pipeline = rag_pipeline
def main() -> None:
file_path: str = "documents"
doc_store_type: DocumentStoreType = DocumentStoreType.Pgvector
password: str = ""
user_name: str = ""
db_name: str = ""
if doc_store_type == DocumentStoreType.Pgvector:
password = gen.get_secret(r'D:\Documents\Secrets\postgres_password.txt')
user_name = "postgres"
db_name = "postgres"
elif doc_store_type == DocumentStoreType.Neo4j:
password = gen.get_secret(r'D:\Documents\Secrets\neo4j_password.txt')
user_name = "neo4j"
db_name = "neo4j"
hf_secret: str = gen.get_secret(r'D:\Documents\Secrets\huggingface_secret.txt') # Put your path here
google_secret: str = gen.get_secret(r'D:\Documents\Secrets\gemini_secret.txt') # Put your path here # noqa: F841
# model: gen.GeneratorModel = gen.HuggingFaceLocalModel(password=hf_secret, model_name="google/gemma-1.1-2b-it")
# model: gen.GeneratorModel = gen.GoogleGeminiModel(password=google_secret)
# model: gen.GeneratorModel = gen.HuggingFaceAPIModel(password=hf_secret, model_name="HuggingFaceH4/zephyr-7b-alpha") # noqa: E501
# model: gen.GeneratorModel = gen.OllamaModel(model_name="gemma2")
model: gen.GeneratorModel = gen.LlamaCppModel(model_link="https://huggingface.co/TheBloke/zephyr-7B-beta-GGUF/resolve/main/zephyr-7b-beta.Q4_K_M.gguf") # noqa: E501
# Possible outputs to include in the debug results: "lex_retriever", "semantic_retriever", "prompt_builder",
# "joiner", "llm", "prompt_builder", "doc_query_collector"
include_outputs_from: Optional[set[str]] = None # {"prompt_builder", "reranker_streamer"}
rag_processor: RagPipeline = RagPipeline(table_name="book_archive",
generator_model=model,
db_user_name=user_name,
db_password=password,
postgres_host='localhost',
postgres_port=5432,
db_name=db_name,
document_store_type=doc_store_type,
use_streaming=True,
verbose=True,
llm_top_k=5,
retriever_top_k_docs=5,
include_outputs_from=include_outputs_from,
search_mode=SearchMode.HYBRID,
use_reranker=True,
use_voice=False,
embedder_model_name="BAAI/llm-embedder")
if rag_processor.verbose:
# Draw images of the pipelines
rag_processor.draw_pipeline()
print("Generator Embedder Dims: " + str(model.embedding_dimensions))
print("Generator Context Length: " + str(model.context_length))
print("Sentence Embedder Dims: " + str(rag_processor.sentence_embed_dims))
print("Sentence Embedder Context Length: " + str(rag_processor.sentence_context_length))
query: str = "How do we test mathematical theories?"
# "Should we strive to make our theories as severely testable as possible?"
# "Should you ad hoc save your theory?"
# "How are refutation, falsification, and testability related?"
print()
print()
print("Query: " + query)
print()
# Pause for user to hit enter
input("Press Enter to continue...")
rag_processor.generate_response(query)
if __name__ == "__main__":
main()
# TODO: Add a way to chat with the model
# TODO: Add graph rag pipeline