Zh-CN | English
deepstream-occupancy-analytics项目提供了一种往kafka发送analytics统计数据的方法。但是所有的改动,特别是主程序是用C语言开发的。但写这篇文章的时候,在网上还没发现官方系统性的说明和解释,都是一些零碎的问答。
因此综合参考文档,以跨线统计为例,本项目提供了一种python版本发送统计数据的方法,同时详细说明了需要改动和编译哪些C程序以及deepstream python bindings。可以参考主要改动定制化自己想要收集并发送的数据内容和格式。
改动的地方不多,但对于没接触过C语言的人来说,需要花费一些时间,因此下面记录了探索的过程。
论坛上有人回复说,在以后的release中,将会提供基于deepstream python发送自定义数据的功能
主要改动分为三点:
- 将自定义的数据结构追加到NvDsEventMsgMeta,例如将
lc_curr_straight
和lc_cum_straight
加入 - 修改eventmsg_payload程序,编译产生
libnvds_msgconv.so
- 同步更改bindschema.cpp, 编译deepstream python bindings
最后只需要在python程序中加入如下代码即可发送自定义的统计数据:
# line crossing current count of frame
obj_lc_curr_cnt = user_meta_data.objLCCurrCnt
# line crossing cumulative count
obj_lc_cum_cnt = user_meta_data.objLCCumCnt
msg_meta.lc_curr_straight = obj_lc_curr_cnt["straight"]
msg_meta.lc_cum_straight = obj_lc_cum_cnt["straight"]
obj_lc_curr_cnt和obj_lc_cum_cnt的key在config_nvdsananlytics.txt中定义
还有一种更简单的方案。如果场景需求中,时延并不重要,也不需要同时处理大规模视频流的话,可以考虑使用kafka-python
等python库,直接将获取到的analytics发送出去,不经过nvmsgconv
和nvmsgbroker
这两个插件。
如果时延重要,或者要处理大规模视频流,则需要参考下文微调一下C的源代码,重新编译,因为探针函数是阻塞的,并不适合在里面加入复杂的处理逻辑。
- nvidia-docker2
- deepstream-6.1
如果想插入自定义的消息,请直接参考主要改动
-
clone 该代码仓库, 在
deepstream_python_nvdsanalytics_to_kafka
目录, 运行sh docker/build.sh <image_name>
构建镜像, e.g:sh docker/build.sh deepstream:6.1-triton-jupyter-python-custom
-
运行docker镜像并进入jupyter环境
docker run --gpus device=0 -p 8888:8888 -d --shm-size=1g -w /opt/nvidia/deepstream/deepstream-6.1/sources/deepstream_python_apps/mount/ -v ~/deepstream_python_nvdsanalytics_to_kafka/:/opt/nvidia/deepstream/deepstream-6.1/sources/deepstream_python_apps/mount deepstream:6.1-triton-jupyter-python-custom
浏览器输入
http://<host_ip>:8888
进入jupyter开发环境 -
(可选) 在kubernetes的master节点, 运行
sh /docker/ds-jupyter-statefulset.sh
启动一个deepstream实例. 前提是集群已部署nvidia-device-plugin
deepstream python pipeline位于/pyds_kafka_example/run.py
,主要参考 deepstream-test4
和 deepstream-nvdsanalytics
-
运行前,需要在
pyds_kafka_example/cfg_kafka.txt
里修改partition-key的值,设置为deviceId,这样nvmsgbroker插件会将消息体中deviceId对应的值设置为partition-key -
安装java
apt update && apt install -y openjdk-11-jdk
-
如果没有单独的kafka集群,请参考[https://kafka.apache.org/quickstart]在deepstream实例中部署kafka并创建topic
tar -xzf kafka_2.13-3.2.1.tgz cd kafka_2.13-3.2.1 bin/zookeeper-server-start.sh config/zookeeper.properties bin/kafka-server-start.sh config/server.properties bin/kafka-topics.sh --create --topic ds-kafka --bootstrap-server localhost:9092
-
进入
pyds_kafka_example
目录运行deepstream python pipeline, e.g:python3 run.py -i /opt/nvidia/deepstream/deepstream-6.1/samples/streams/sample_720p.h264 -p /opt/nvidia/deepstream/deepstream-6.1/lib/libnvds_kafka_proto.so --conn-str="localhost;9092;ds-kafka" -s 0 --no-display
# go to kafka_2.13-3.2.1 directory and run
bin/kafka-console-consumer.sh --topic ds-kafka --from-beginning --bootstrap-server localhost:9092
输入如下:
{
"messageid" : "34359fe1-fa36-4268-b6fc-a302dbab8be9",
"@timestamp" : "2022-08-20T09:05:01.695Z",
"deviceId" : "device_test",
"analyticsModule" : {
"id" : "XYZ",
"description" : "\"Vehicle Detection and License Plate Recognition\"",
"source" : "OpenALR",
"version" : "1.0",
"lc_curr_straight" : 1,
"lc_cum_straight" : 39
}
}
在 nvdsmeta_schema.h
的232行,插入自定义的analytics msg meta到NvDsEventMsgMeta
结构中
guint lc_curr_straight;
guint lc_cum_straight;
-
deepstream_schema
在
/opt/nvidia/deepstream/deepstream/sources/libs/nvmsgconv
目录中,nvmsgconv/deestream_schema/deepstream_schema.h
文件的93行,加入同样的analytics msg meta定义到NvDsAnalyticsObject
结构guint lc_curr_straight; guint lc_cum_straight;
-
eventmsg_payload
自定义消息体最重要的一步,在
nvmsgconv/deepstream_schema/eventmsg_payload.cpp
文件的186行,给generate_analytics_module_object
函数加入自定义的analytics msg meta// custom analytics data // json_object_set_int_member (analyticsObj, 消息体中的key, 消息体中的value); json_object_set_int_member (analyticsObj, "lc_curr_straight", meta->lc_curr_straight); json_object_set_int_member (analyticsObj, "lc_curr_straight", meta->lc_curr_straight); json_object_set_int_member (analyticsObj, "lc_cum_straight", meta->lc_cum_straight);
在536行
generate_event_message
函数中,可以注释无效的消息,减小发送消息的大小// // place object // placeObj = generate_place_object (privData, meta); // // sensor object // sensorObj = generate_sensor_object (privData, meta); // analytics object analyticsObj = generate_analytics_module_object (privData, meta); // // object object // objectObj = generate_object_object (privData, meta); // // event object // eventObj = generate_event_object (privData, meta); // root object rootObj = json_object_new (); json_object_set_string_member (rootObj, "messageid", msgIdStr); // json_object_set_string_member (rootObj, "mdsversion", "1.0"); json_object_set_string_member (rootObj, "@timestamp", meta->ts); // use the orginal params sensorStr in NvDsEventMsgMeta to accept deviceId that generated by python script json_object_set_string_member (rootObj, "deviceId", meta->sensorStr); // json_object_set_object_member (rootObj, "place", placeObj); // json_object_set_object_member (rootObj, "sensor", sensorObj); json_object_set_object_member (rootObj, "analyticsModule", analyticsObj); // not use these metadata // json_object_set_object_member (rootObj, "object", objectObj); // json_object_set_object_member (rootObj, "event", eventObj); // if (meta->videoPath) // json_object_set_string_member (rootObj, "videoPath", meta->videoPath); // else // json_object_set_string_member (rootObj, "videoPath", "");
-
重新编译自定义的libnvds_msgconv.so
cd /opt/nvidia/deepstream/deepstream/sources/libs/nvmsgconv \ && make \ && cp libnvds_msgconv.so /opt/nvidia/deepstream/deepstream/lib/libnvds_msgconv.so
编译deepstream python binding前,在 <your own path>/deepstream_python_apps/bindings/src/bindschema.cpp
中,加入对应的msg定义
.def_readwrite("lc_curr_straight", &NvDsEventMsgMeta::lc_curr_straight)
.def_readwrite("lc_cum_straight", &NvDsEventMsgMeta::lc_cum_straight);
接着编译deepstream python binding,并且通过pip安装,更多的操作请参考 /docker/Dockerfile