-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreference_system.py
284 lines (236 loc) · 10.1 KB
/
reference_system.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import cv2
import numpy as np
from roi import ROI
class ReferenceCircle:
position_camera: np.array
radius_camera: int
position_robot: np.array
roi: ROI
label: str
def __init__(self, label: str, position_robot: tuple | list, capture: cv2.VideoCapture):
self.position_robot = np.array(position_robot, dtype=np.float32)
self.label = label
self.roi = ROI(label)
self.roi.load(capture)
self.position_camera = None
self.radius_camera = None
try:
with open(f"position_camera_{self.label}.txt") as f:
position_camera_str = f.read().rstrip("\n").split(",")
x, y, radius = [int(i) for i in position_camera_str]
self.position_camera = np.array((x, y))
self.radius_camera = radius
except Exception as e:
print(f"Couldn't read camera position of {self.label}")
# exit()
def update_roi(self, capture: cv2.VideoCapture):
self.roi.save(capture)
def draw(self, frame: cv2.typing.MatLike):
self.roi.draw(frame)
if self.position_camera is not None:
cv2.circle(frame,
(self.position_camera[0],
self.position_camera[1]),
self.radius_camera,
(0, 140, 255),
thickness=1)
cv2.circle(frame,
(self.position_camera[0],
self.position_camera[1]),
2,
(0, 140, 255),
thickness=4)
else:
print("position camera is None")
def update_position_camera(self, capture: cv2.VideoCapture):
self.roi.load(capture)
max_circle = None
for i in range(10):
ret, frame = capture.read()
roi_frame = self.roi.get_frame(frame)
gray = cv2.cvtColor(roi_frame, cv2.COLOR_BGR2GRAY)
gray_blurred = cv2.GaussianBlur(gray, (9, 9), 2)
circles = cv2.HoughCircles(
gray_blurred,
method=cv2.HOUGH_GRADIENT,
dp=1,
minDist=50,
param1=50,
param2=32,
minRadius=5,
maxRadius=50
)
if circles is not None:
circles = np.uint16(np.around(circles))
for i in circles[0, :]:
if max_circle is None or i[2] > max_circle[2]:
print("new max circle!")
max_circle = i
if max_circle is not None:
cv2.circle(frame,
(max_circle[0] + self.roi.x,
max_circle[1] + self.roi.y),
max_circle[2],
(0, 140, 255),
thickness=1)
cv2.circle(frame,
(max_circle[0] + self.roi.x, max_circle[1]+self.roi.y),
2,
(0, 140, 255),
thickness=2)
self.position_camera = np.array(
(max_circle[0]+self.roi.x,
max_circle[1]+self.roi.y))
self.radius_camera = max_circle[2]
with open(f"position_camera_{self.label}.txt", "w") as f:
write_str = f"{self.position_camera[0]},{self.position_camera[1]},{self.radius_camera}\n"
f.write(write_str)
self.roi.draw(frame)
cv2.imshow("Reference Circle", frame)
cv2.waitKey(0)
print("destroying windows")
cv2.destroyAllWindows()
class ReferenceSystem:
reference_1: ReferenceCircle
reference_2: ReferenceCircle
reference_3: ReferenceCircle
reference_4: ReferenceCircle
reference_1_aux: np.array
reference_2_aux: np.array
reference_3_aux: np.array
reference_4_aux: np.array
TRANSFORMATION_MATRIX = np.array(((-1, 0), (0, 1)))
homography_matrix: np.array
def __init__(self, capture: cv2.VideoCapture):
self.reference_1 = ReferenceCircle("reference_1", (132, 79), capture)
self.reference_2 = ReferenceCircle("reference_2", (-138, 91), capture)
self.reference_3 = ReferenceCircle("reference_3", (-138, 337), capture)
self.reference_4 = ReferenceCircle("reference_4", (132, 335), capture)
self.reference_1_aux = np.array((0, 0))
self.reference_2_aux = ReferenceSystem.TRANSFORMATION_MATRIX @ (
self.reference_2.position_robot - self.reference_1.position_robot)
self.reference_3_aux = ReferenceSystem.TRANSFORMATION_MATRIX @ (
self.reference_3.position_robot - self.reference_1.position_robot)
self.reference_4_aux = ReferenceSystem.TRANSFORMATION_MATRIX @ (
self.reference_4.position_robot - self.reference_1.position_robot)
self.update_homography_matrix()
def update_homography_matrix(self):
source_points = np.array(
(
self.reference_1.position_camera,
self.reference_2.position_camera,
self.reference_3.position_camera,
self.reference_4.position_camera
)).reshape(-1, 1, 2)
destination_points = np.array(
(
self.reference_1_aux,
self.reference_2_aux,
self.reference_3_aux,
self.reference_4_aux
)).reshape(-1, 1, 2)
H, mask = cv2.findHomography(
source_points, destination_points, cv2.RANSAC, 5.0)
self.homography_matrix = H
def get_robot_coordinates(self, target_x_camera: int, target_y_camera: int):
target_point_camera = np.array((target_x_camera, target_y_camera, 1))
target_point_robot_new = self.homography_matrix @ target_point_camera
target_point_camera = target_point_camera[:2]
target_point_robot = np.array((0, 0))
target_point_robot[0] = self.reference_1.position_robot[0] - \
target_point_robot_new[0]
target_point_robot[1] = self.reference_1.position_robot[1] + \
target_point_robot_new[1]
return target_point_robot
TRANSFORMATION_MATRIX = np.array(((-1, 0), (0, 1)))
def get_new_reference(new_zero: ReferenceCircle, current_reference: ReferenceCircle) -> np.array:
new_reference = current_reference.position_robot-new_zero.position_robot
new_reference = TRANSFORMATION_MATRIX @ new_reference
return new_reference
if __name__ == "__main__":
from predicter import EggPredicter
capture = cv2.VideoCapture(index=2)
egg_predicter = EggPredicter(confidence_threshold=0.15, capture=capture)
# image = cv2.imread(
# "homography-2.png")
reference_1 = ReferenceCircle("reference_1", (132, 79), capture)
reference_2 = ReferenceCircle("reference_2", (-138, 91), capture)
reference_3 = ReferenceCircle("reference_3", (-138, 337), capture)
reference_4 = ReferenceCircle("reference_4", (132, 335), capture)
reference_1.update_roi(capture)
while reference_1.position_camera is None:
reference_1.update_position_camera(capture)
reference_2.update_roi(capture)
while reference_2.position_camera is None:
reference_2.update_position_camera(capture)
reference_3.update_roi(capture)
while reference_3.position_camera is None:
reference_3.update_position_camera(capture)
reference_4.update_roi(capture)
while reference_4.position_camera is None:
reference_4.update_position_camera(capture)
# exit()
reference_1_new = np.array((0, 0))
reference_2_new = get_new_reference(reference_1, reference_2)
reference_3_new = get_new_reference(reference_1, reference_3)
reference_4_new = get_new_reference(reference_1, reference_4)
# reference_1.position_camera = np.array((219, 87))
# reference_2.position_camera = np.array((468, 101))
# reference_3.position_camera = np.array((513, 428))
# reference_4.position_camera = np.array((207, 413))
# reference_1.radius_camera = 12
# reference_2.radius_camera = 12
# reference_3.radius_camera = 12
# reference_4.radius_camera = 12
src_pts = np.array(
(
reference_1.position_camera,
reference_2.position_camera,
reference_3.position_camera,
reference_4.position_camera
)).reshape(-1, 1, 2)
dst_pts = np.array(
(
reference_1_new,
reference_2_new,
reference_3_new,
reference_4_new
)).reshape(-1, 1, 2)
H, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
while True:
ret, frame = capture.read()
if not ret:
print("Could not read camera")
continue
reference_1.draw(frame)
reference_2.draw(frame)
reference_3.draw(frame)
reference_4.draw(frame)
try:
predictions = egg_predicter.predict(frame)
for i, p in enumerate(predictions):
target_point_camera = np.array((p.cx, p.cy, 1))
target_point_robot_new = H @ target_point_camera
target_point_camera = target_point_camera[:2]
target_point_robot = np.array((0, 0))
target_point_robot[0] = reference_1.position_robot[0] - \
target_point_robot_new[0]
target_point_robot[1] = reference_1.position_robot[1] + \
target_point_robot_new[1]
cv2.circle(frame, target_point_camera, 2, (0, 255, 0), 2)
cv2.putText(frame,
f"({target_point_robot[0]:.2f},{target_point_robot[1]:.2f})",
(target_point_camera[0],
target_point_camera[1]+20),
cv2.FONT_ITALIC,
fontScale=0.40,
color=(0, 255, 0),
thickness=1)
except Exception as e:
print(e)
continue
cv2.imshow('Reference System', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
capture.release()
cv2.destroyAllWindows()