-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathslides_lecture03_summary.tex
177 lines (139 loc) · 4.85 KB
/
slides_lecture03_summary.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
\renewcommand{\summarizedlecture}{3 }
%
%
%
\begin{frame}{Lecture \summarizedlecture - \lecturesummarytitle}
\begin{itemize}
\item {\bf To bring together a collection of charges I need to do work}
(for example, In case of two like-sign charges I need to exert a force against the action of the field)
\begin{equation*}
W = \int \vec{F} \cdot d\vec{\ell}
\end{equation*}
\item The work done can be positive or negative.
\item The work done is {\bf path-independent}
\begin{itemize}
\item I do the same work regardless of the path followed to bring the charges in their positions.
\item We say that the electric force is {\bf conservative}.
\end{itemize}
\item The work done is converted to {\bf electric potential energy}
\item We calculated the potential energy for systems of 2, 3 and N charges as well as continuous distributions of charge.
\end{itemize}
\end{frame}
%
%
%
\begin{frame}{Lecture \summarizedlecture - \lecturesummarytitle (cont'd)}
For a
\begin{itemize}
\item system of 2 charges:
\begin{equation*}
U = \frac{q_1 q_2}{4\pi\epsilon_0} \frac{1}{|\vec{r}_{12}|}
\end{equation*}
\item system of 3 charges:
\begin{equation*}
U = \frac{q_1 q_2}{4\pi\epsilon_0} \frac{1}{|\vec{r}_{12}|} +
\frac{q_1 q_3}{4\pi\epsilon_0} \frac{1}{|\vec{r}_{13}|} +
\frac{q_2 q_3}{4\pi\epsilon_0} \frac{1}{|\vec{r}_{23}|}
\end{equation*}
\item system of N charges:
\begin{equation*}
U = \frac{1}{2} \sum_{i,j=1;i{\ne}j}^{N} \frac{q_i q_j}{4\pi\epsilon_0|\vec{r}_{ij}|}
\end{equation*}
\item continuous charge distribution (with density $\rho$ over a volume $\tau$):
\begin{equation*}
U = \frac{1}{2} \int_{\tau} d\tau \int_{\tau^{\prime}} d\tau^{\prime}
\frac{\rho(\vec{r}) \rho(\vec{r^{\prime}})}{4\pi\epsilon_0|\vec{r} - \vec{r^{\prime}}|}
\end{equation*}
\end{itemize}
\end{frame}
%
%
%
\begin{frame}{Lecture \summarizedlecture - \lecturesummarytitle (cont'd)}
\begin{itemize}
\item
The electric {\bf potential energy is stored in the electric field}:
\begin{equation*}
U = \frac{\epsilon_0}{2} \int_{all\;space} |\vec{E}(\vec{r})|^2 d\tau
\end{equation*}
\item
{\bf Relationship between force and potential energy}:\\
\begin{equation*}
U = \int \vec{F} \cdot d\vec{\ell}
\end{equation*}
\begin{equation*}
\vec{F} = -\vec{\nabla}U
\end{equation*}
\item
{\bf Electric potential (V)}: A scalar field
\begin{itemize}
\item It is the amount of work required to bring a charge Q at position $\vec{r}$, divided by the charge Q.
\item SI units: Volts (V)
\begin{itemize}
\item Derived unit: One Joule per Coulomb
\end{itemize}
\end{itemize}
\end{itemize}
\end{frame}
%
%
%
\begin{frame}{Lecture \summarizedlecture - \lecturesummarytitle (cont'd)}
\begin{itemize}
\item We also studied the {\bf circuital law for Electrostatics}
\begin{itemize}
\item Our second set of Maxwell's equations.
\end{itemize}
\vspace{0.2cm}
\item Maxwell's equation we know so far:
\end{itemize}
\begin{center}
{
\begin{table}[H]
\begin{tabular}{|l|c|c|}
\hline
& {\it Integral form} & {\it Differential form} \\
\hline
{\bf Gauss's law} &
$\oint \vec{E} \cdot d\vec{S} = Q_{enclosed} / \epsilon_0$ &
$\vec{\nabla} \cdot \vec{E} = \rho / \epsilon_0$ \\
{\bf Circuital law} &
$\oint \vec{E} \cdot d\vec{\ell} = 0$ &
$\vec{\nabla} \times \vec{E} = 0$ \\
\hline
\end{tabular}
\end{table}
}
\end{center}
\begin{itemize}
\item Because (in Electrostatics) the electric field has no rotation
it can be expressed as the gradient of a scalar function (the electric potential):
\begin{equation*}
\vec{E} = - \vec{\nabla} V
\end{equation*}
\end{itemize}
\end{frame}
%
%
%
\begin{frame}{Lecture \summarizedlecture - \lecturesummarytitle (cont'd)}
\begin{itemize}
\item Need both the divergence and the curl of $\vec{E}$ (both Gauss' and circuital laws)
to determine all three components of $\vec{E}$.
\begin{itemize}
{
\item Gauss' and circuital laws provide a coupled system of 1$^{st}$ order p.d.e's.
}
\end{itemize}
\item I can combine the Gauss' and circuital laws into a single 2$^{nd}$ order p.d.e for the
electric potential V: {\bf Poisson equation}
\begin{equation*}
\vec{\nabla}^{2} V = - \frac{\rho}{\epsilon_0}
\end{equation*}
\item Away from sources ($\rho$=0) Poisson's equation becomes $\vec{\nabla}^{2} V = 0$
which is known as the {\bf Laplace equation}.
\item Using the Poisson (or Laplace) equations one can determine V (and, thus, $\vec{E}$)
only using the appropriate {\bf boundary conditions}.
\item {\bf A uniqueness theorem} is a proof that a given set of boundary conditions is sufficient.
\end{itemize}
\end{frame}