-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathslides_lecture04_main.tex
2155 lines (1648 loc) · 57.8 KB
/
slides_lecture04_main.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\renewcommand{\prevlecture}{3 }
\renewcommand{\thislecture}{4 }
\renewcommand{\nextlecture}{5 }
%
% Cover page
%
\title[PHYS 201 / Lecture \thislecture]
{
PHYS 201 / Lecture \thislecture\\
{\it Conductors; Capacitance; Dielectrics; Dipoles; Polarization}\\
}
\input{slides_author.tex}
\begin{frame}[plain]
\titlepage
\end{frame}
% ------------------------------------------------------------------------------
% ------------------------------------------------------------------------------
%
% Revision of previous lecture
%
\renewcommand{\lecturesummarytitle}{Revision }
\input{slides_lecture03_summary.tex}
%
% Plan for this lecture
%
\begin{frame}{Plan for Lecture \thislecture}
\begin{itemize}
\item So far we studied electrostatics in the {\em vacuum}.
\item In this lecture we will discuss {\bf what happens when materials are placed within an electric field}.
\item With regards to their electrical properties, there are 2 main types of materials
\begin{itemize}
\item materials that conduct electricity: {\bf conductors}
\item materials that do not conduct electricity: {\bf insulators (dielectrics)}
\end{itemize}
\item We will start by discussing what happens when we place a conductor in an electrostatic field
\item We will discuss the concept of capacitance, and
study in more detail a simple capacitor: Parallel plate capacitor.
\item Then, we also see what happens when we place a dielectric inside an electrostatic field
and we will discuss electrical dipoles and the concept of polarisation.
\end{itemize}
\end{frame}
% ------------------------------------------------------------------------------
% ------------------------------------------------------------------------------
%
%
%
\begin{frame}{Conductors}
\begin{columns}
\begin{column}{0.70\textwidth}
A {\bf {\em conductor}} is an object or type of material
which {\bf contains electric charges that are relatively free to move} through that object or material.\\
\end{column}
\begin{column}{0.30\textwidth}
\includegraphics[width=0.95\textwidth]{./images/photos/power_cable_01.jpg}\\
\end{column}
\end{columns}
\vspace{0.3cm}
Free electric charges:
\begin{itemize}
\item In most case, these are {\bf electrons} (e.g. in metals).
\item But in some cases the positive charges may also be able to move
(e.g. in electrolytes such as salt water).
\end{itemize}
\vspace{0.3cm}
A {\em \bf perfect conductor} has an {\bf unlimited supply of free charges}.
\end{frame}
%
%
%
\begin{frame}{Supply of free charges}
What provides that {\em unlimited supply} of free charges?\\
We will examine the most typical conducting substance: {\bf Metals}.\\
\begin{center}
\includegraphics[width=0.70\textwidth]{./images/photos/gallium_crystals.jpg}
\end{center}
\end{frame}
%
%
%
\begin{frame}{Crystal structure of metals}
In a metallic substance, the {\bf atoms are usually closed packed and neatly arranged
in symmetrical structures we call {\em crystals}}.\\
\vspace{0.2cm}
\begin{itemize}
\item Think how grocers pack oranges: Nature does something very similar when it organizes
atoms in crystals.
\item Atoms in crystals typically have 12 or 8 touching neighbours.
\end{itemize}
\begin{columns}
\begin{column}{0.50\textwidth}
\begin{center}
{\bf 12 neighbours} \\
\vspace{0.23cm}
\includegraphics[width=0.80\textwidth]{./images/schematics/crystals_12_touching_neighbours.png}
\end{center}
{\scriptsize
6 neighbours on each plane + 3 on each of the two neighbouring planes.\\
}
\end{column}
\begin{column}{0.50\textwidth}
\begin{center}
{\bf 8 neighbours} (less efficient packing) \\
\includegraphics[width=0.80\textwidth]{./images/schematics/crystals_8_touching_neighbours.png}
\end{center}
{\scriptsize
No touching neighbour on same plane, but 4 from each of the planes below and above.\\
}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Supply of free charges}
{\bf Atoms lose one or more electrons from their outer shells and these electrons are free to move}.
In the case of metals the positive charges are packed together and can not move.\\
\begin{columns}
\begin{column}{0.50\textwidth}
\begin{center}
\includegraphics[width=0.98\textwidth]{./images/schematics/conduction_band.png}\\
\end{center}
\end{column}
\begin{column}{0.50\textwidth}
\begin{itemize}
{\scriptsize
\item Energy levels quantized.
\item Closely spaced levels: Energy "bands".
\item Nature seeks to minimize the total energy but not all electrons in the lowest state (Pauli exclusion principle).
\item Levels up to the Fermi level are filled.
\item Metals have many energy levels close to the Fermi level: Electrons can jump between states.\\
}
\end{itemize}
\end{column}
\end{columns}
\vspace{0.3cm}
A {\em \bf perfect conductor} has an {\bf unlimited supply of free charges}.
\begin{itemize}
\item There are no perfect conductors, but many substances come close!
\item For example, in copper, the free charge density is 1.8 $\times$ 10$^{10}$ C/m$^3$.
\end{itemize}
\end{frame}
%
%
%
\begin{frame}{Placing a conductor within an electric field}
{\bf What happens if we place a conductor} (e.g. a chunk of metal)
{\bf within an external electric field?}\\
\vspace{0.3cm}
\begin{itemize}
\item The electric field vanishes everywhere inside a conductor.
\item The potential in constant inside a conductor.
\item Charge accumulates in the surface.
\item The electric field on the surface of a conductor has no tangential component.
\end{itemize}
\vspace{0.2cm}
How do these effects come about?
\end{frame}
%
%
%
\begin{frame}{The effect of the external electric field}
Assume that our conductor is uncharged, so it is neutral (*).
Of course, it is made up from positive and negative charges.
Within an external field:
\begin{itemize}
{\small
\item The free negative charges will move opposite to the field.
\item The positive charges feel a force but are pinned and can not move.
}
\end{itemize}
\begin{columns}
\begin{column}{0.50\textwidth}
\begin{center}
\includegraphics[width=0.75\textwidth]{./images/schematics/metal_in_electric_field_1.png}\\
\end{center}
\end{column}
\begin{column}{0.50\textwidth}
\begin{center}
\includegraphics[width=0.80\textwidth]{./images/schematics/metal_in_electric_field_2.png}\\
\end{center}
\end{column}
\end{columns}
\noindent\rule{2cm}{0.4pt}\\
{\scriptsize
(*) It is neutral on average: i.e. in {\em macroscopic} volumes that contain few $\times$ $\sim$100 atoms.
Obviously much smaller volumes can have net charge:
For example, a volume that includes only an atomic nucleus will be positively charged.\\
}
\end{frame}
%
%
%
\begin{frame}{The electric field inside a conductor}
The motion of charges creates a {\bf macroscopic accumulation of charge}:
\begin{itemize}
{\small
\item An excess of negative charge on the side opposite to the
direction of $\vec{E}$.
\item A deficit of negative charge (i.e. an excess of positive charge)
on the side pointed to by $\vec{E}$.
}
\end{itemize}
\begin{columns}
\begin{column}{0.45\textwidth}
\begin{center}
\includegraphics[width=0.98\textwidth]{./images/schematics/metal_in_electric_field_3.png}\\
\end{center}
\end{column}
\begin{column}{0.55\textwidth}
\begin{itemize}
{\small
\item {\bf The induced charges create an electric field of their own}.
\item The electric field within the conductor is the vector sum of the the external and induced fields.
\item The induced electric field {\bf opposes the external field}.
}
\end{itemize}
\end{column}
\end{columns}
\vspace{0.2cm}
Eventually {\bf the electric field vanishes {\em everywhere} inside the conductor.}\\
\end{frame}
%
%
%
\begin{frame}{The electric potential inside a conductor}
Recall that the electric field $\vec{E}$ and electric potential V are related as follows:
\begin{equation*}
\vec{E} =
- \vec{\nabla} V =
- \Big(
\frac{\partial V}{\partial x},
\frac{\partial V}{\partial y},
\frac{\partial V}{\partial z}
\Big)
\end{equation*}
\vspace{0.3cm}
The electric field vanishes everywhere inside a conductor.\\
\vspace{0.3cm}
Therefore, {\textbf{the potential in constant inside a conductor.}}\\
\vspace{0.2cm}
We say that the conductor is an {\bf equipotential}.\\
\end{frame}
%
%
%
\begin{frame}{Induced charge inside a conductor}
As we have seen, charges are free to move. Where to?\\
\vspace{0.3cm}
{\bf The surface} is the only place where induced charges could be!
\begin{itemize}
\item It follows from Gauss's law:
\begin{equation*}
\vec{\nabla} \cdot \vec{E} = {\rho}/\epsilon_0
\end{equation*}
\item If $|\vec{E}|=0$ inside a conductor, then $\rho(r)$=0 too.
\item The induced charges can not live in the volume of the conductor, so they have to be on its surface.
\end{itemize}
\end{frame}
%
%
%
\begin{frame}{Field on the surface of the conductor}
\begin{columns}
\begin{column}{0.40\textwidth}
\begin{center}
\includegraphics[width=0.85\textwidth]{./images/schematics/conductor_irregular_shape_surface_field.jpg}\\
\end{center}
\end{column}
\begin{column}{0.60\textwidth}
For the same reasons that the electric field is cancelled off within the conductor,
{\bf it is perpendicular to the surface just outside the conductor}.\\
\vspace{0.3cm}
If there was a tangential component on the surface,
charge would move so as to cancel off that component!\\
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Field on the surface of the conductor}
To be convinced, consider a charge Q moving on the surface of the conductor:\\
\vspace{0.3cm}
\begin{itemize}
\item The electric field exerts a force upon Q.
\item The surface of the conductor is at the same potential V.
\item Therefore, as long as Q stays on the surface, the electric force acting on Q does no work.
\end{itemize}
\vspace{0.3cm}
Recall that $W = \int \vec{F} \cdot d\vec{\ell}$.\\
\vspace{0.3cm}
If the electric force does no work, it is because {\bf it has no tangential
component on the surface of the conductor}, i.e. it is always perpendicular to the surface.
\end{frame}
%
%
%
\begin{frame}{Field on the surface of the conductor}
Another easy way to see that the electric field just outside the surface
of a conductor has no tangential component
is by a straightforward application of the circuital law.\\
\vspace{0.3cm}
\begin{columns}
\begin{column}{0.30\textwidth}
\begin{center}
\includegraphics[width=0.99\textwidth]{./images/schematics/conductor_no_tangential_component_circuital_law.png}\\
\end{center}
\end{column}
\begin{column}{0.70\textwidth}
We know that the circulation of the electric field $\vec{E}$ along a closed trajectory is 0:
\begin{equation*}
\oint \vec{E} \cdot d\vec{\ell} = 0.
\end{equation*}
Applying the circuital law for the closed trajectory shown on the left, we have:
\begin{equation*}
\oint \vec{E} \cdot d\vec{\ell} =
\int_{a} \vec{E} \cdot d\vec{\ell} + \int_{b} \vec{E} \cdot d\vec{\ell}
+ \int_{c} \vec{E} \cdot d\vec{\ell} + \int_{d} \vec{E} \cdot d\vec{\ell} = 0.
\end{equation*}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Field on the surface of the conductor}
\begin{columns}
\begin{column}{0.30\textwidth}
\begin{center}
\includegraphics[width=0.99\textwidth]{./images/schematics/conductor_no_tangential_component_circuital_law.png}\\
\end{center}
\end{column}
\begin{column}{0.70\textwidth}
\begin{itemize}
\item $\vec{E}=0$ in the conductor so the segment `a' does not contribute
to the integral ($\int_{a} \vec{E} \cdot d\vec{\ell} = 0$).
\item The segments exiting the conductor (`b' and `d') can be made infinitesimally small,
so they do not contribute to the integral either\\
($\int_{b} \vec{E} \cdot d\vec{\ell} = \int_{d} \vec{E} \cdot d\vec{\ell} = 0$).
\item Therefore $\oint \vec{E} \cdot d\vec{\ell} = 0$ implies that $\int_{c} \vec{E} \cdot d\vec{\ell} = 0$
\end{itemize}
\end{column}
\end{columns}
\begin{itemize}
\item The segment `c' can be anywhere just outside the surface of the conductor and, since the segments `b' and `d' are
infinitesimally small, `c' is parallel to the surface of the conductor.
\item Therefore, the only way that $\int_{c} \vec{E} \cdot d\vec{\ell}$ to be always 0 is for $\vec{E}$ to be
always perpendicular to the surface of the conductor.
\end{itemize}
\end{frame}
%
%
%
\begin{frame}{Distribution of charge over the surface of a conductor}
{\bf In general}, the induced charges are {\bf not uniformly distributed}.\\
\vspace{0.4cm}
Consider two conducting spheres with different radii.\\
\vspace{0.2cm}
\begin{columns}
\begin{column}{0.33\textwidth}
{\small
\begin{center}
\includegraphics[width=0.90\textwidth]{./images/schematics/two_electrically_connected_spheres.png}
\end{center}
}
\end{column}
\begin{column}{0.67\textwidth}
{\small
The sphere with radius $r_1$ has charge $Q_1$, while the sphere with radius $r_2$ has charge $Q_2$.
The spheres are brought into electrical contact and then separated.
}
\end{column}
\end{columns}
\vspace{0.3cm}
{\bf What is the charge density after separation?}\\
\vspace{0.3cm}
After the separation the two spheres have charge $Q_1^{\prime}$, $Q_2^{\prime}$
and they are at the same potential V:
\begin{equation*}
V = \frac{Q_1^{\prime}}{4\pi \epsilon_0 r_1} = \frac{Q_2^{\prime}}{4\pi \epsilon_0 r_2}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Distribution of charge over the surface of a conductor}
Therefore the surface charge densities are:
\begin{equation*}
\sigma_1^{\prime} =
\frac{Q_1^{\prime}}{4\pi r_1^2} =
\frac{4 \pi \epsilon_0 r_1 V}{4\pi r_1^2} =
\frac{\epsilon_0 V}{r_1}
\;\;\;\; and \;\;\;\;
\sigma_2^{\prime} = \frac{\epsilon_0 V}{r_2}
\end{equation*}
\vspace{0.2cm}
Thus {\bf $\sigma^{\prime} \propto \frac{1}{r}$}.\\
\vspace{0.2cm}
This is a more general conclusion.\\
\vspace{0.2cm}
\begin{columns}
\begin{column}{0.50\textwidth}
\begin{center}
\includegraphics[width=0.90\textwidth]{./images/schematics/distribution_of_charge_over_surface_of_conductor.png}\\
\end{center}
\end{column}
\begin{column}{0.40\textwidth}
{\bf The surface charge density is smaller in the areas where curvature is smaller.}\\
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Summary: Placing a conductor within an electric field}
\begin{itemize}
\item The electric field vanishes everywhere inside a conductor.
\item The potential in constant inside a conductor.
\item Charge accumulates in the surface.
\item The electric field on the surface of a conductor has no tangential component.
\end{itemize}
\end{frame}
%
% Quiz
%
{
\problemslide
\begin{frame}{Quiz}
\begin{blockexmplque}{Question}
An uncharged spherical conductor entered at the origin has a cavity with an
arbitrary shape carved out of it. Somewhere within the cavity is a charge q.
What is the field outside the sphere?\\
\begin{center}
\includegraphics[width=0.47\textwidth]{./images/problems/lect3_conductor_cavity.png}
\end{center}
\end{blockexmplque}
\vspace{0.1cm}
{\small
\it Will discuss in the lecture. For a detailed written answer see Griffiths.
}
\end{frame}
} % Worked example
%
%
%
\begin{frame}{Capacitance}
{\bf Capacitance denotes the ability of a body to store electric charge.}\\
\vspace{0.4cm}
A system that has capacitance is called a {\bf capacitor}.\\
\vspace{0.2cm}
As we shall see, capacitors store energy (in their electric field).\\
\begin{columns}
\begin{column}{0.50\textwidth}
\begin{center}
\includegraphics[width=0.95\textwidth]{./images/photos/capacitor_1.jpg}\\
\end{center}
\end{column}
\begin{column}{0.50\textwidth}
\begin{center}
\includegraphics[width=0.95\textwidth]{./images/photos/capacitor_interior_1.jpg}\\
\end{center}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Capacitance of an isolated conductor}
At first, let's consider an {\bf isolated conductor} with {\bf net charge} Q in it.
\begin{itemize}
\item If Q is positive that means that we took away electrons or,
\item if Q is negative that means that we gave it an excess of electrons.
\end{itemize}
\vspace{0.3cm}
The charge Q distributes itself in the conductor.
\begin{itemize}
\item That charge distribution is expressed with the charge density $\rho$.
\item We don't know what that charge density is:
The charge will not be uniformly distributed, unless the conductor is a uniform sphere.
\end{itemize}
\vspace{0.3cm}
The one thing we do know for sure is that the integral of $\rho$ over the volume of the conductor is Q
\begin{equation*}
Q = \int_{\tau} \rho(\vec{r})d\tau
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Capacitance of isolated conductor}
As we saw earlier, the electric field is 0 within the conductor, therefore
the conductor is an {\bf equipotential}. The potential is:
\begin{equation*}
V = \frac{1}{4\pi\epsilon_0} \int_{\tau} \frac{\rho(\vec{r})}{r} d\tau
\end{equation*}
Let's tweak the amount of charge by a factor k (e.g. let's double it (k=2)):
\begin{equation*}
Q \rightarrow Q^{\prime} = k Q \Rightarrow
\rho(\vec{r}) \rightarrow \rho^{\prime}(\vec{r}) = k \rho(\vec{r})
\end{equation*}
The potential changes by the same amount:
\begin{equation*}
V \rightarrow V^{\prime} =
\frac{1}{4\pi\epsilon_0} \int_{\tau} \frac{\rho^{\prime}(\vec{r})}{r} d\tau =
\frac{1}{4\pi\epsilon_0} \int_{\tau} \frac{k \rho(\vec{r})}{r} d\tau =
k \frac{1}{4\pi\epsilon_0} \int_{\tau} \frac{\rho(\vec{r})}{r} d\tau =
k V
\end{equation*}
Therefore, {\bf the ratio Q/V remains constant}.\\
{\bf Capacitance} is the constant of proportionality (Q/V).
\end{frame}
%
%
%
\begin{frame}{Capacitance}
{\bf Capacitance} is the constant ratio Q/V.\\
\begin{itemize}
\item In SI, capacitance has units of Coulomb/Volt (= Farad, F)\\
\begin{itemize}
\item So, a 1 F capacitor can store charge of 1 C at 1 V.
\end{itemize}
\end{itemize}
The Farad is a \underline{very large unit} of capacitance.
\begin{itemize}
\item The Earth has a capacitance of ...0.0007 F!
\item In common electrical circuits,
capacitors of the order of pF ($10^{-12}$F) - $\mu$F ($10^{-6}$F) are used.
\end{itemize}
\noindent\rule{2cm}{0.4pt}\\
{\scriptsize
Consider a common AAA battery:
\begin{itemize}
{\small
\item produces a nominal voltage of 1.5 V, and
\item has a lifetime of $\sim$1 A*h = 1 C/s * 3600 s = 3600 C
}
\end{itemize}
You would need a $\sim$2000 F capacitor to store
the same amount of charge in the same potential difference!
{\bf Impractical to use capacitors "as batteries"}.\\
But an advantage of a capacitor is that it can discharge very very quickly,
whereas a battery takes a long time.\\
}
\end{frame}
%
%
%
\begin{frame}{Capacitance of a system of two conductors}
Consider an {\bf isolated system of 2 conductors}.\\
\vspace{0.2cm}
If I move charge from one to another,
the two conductors become oppositely charged.
\begin{itemize}
{\small
\item the one that loses e- becomes positively charged (+Q) and is held at potential $V_{+}$, while
\item the one that gains e- becomes negatively charged (-Q) and is held at potential $V_{-}$
}
\end{itemize}
\vspace{0.2cm}
I can define the {\bf capacitance of the system of two conductors} as
the ratio of charge Q stored in each of the conductors over the potential difference between the two conductors:
\begin{equation*}
C = \frac{Q}{V_{+}-V_{-}}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Capacitance}
Capacitance is really always defined for a system of two conductors.
\begin{equation*}
C = \frac{Q}{V_{+}-V_{-}}
\end{equation*}
What about the capacitance of the {\em single} conductor we saw earlier?\\
One can always assume that there is a second conductor at infinity held at zero potential.\\
\vspace{0.2cm}
The capacitance is an {\bf intrinsically positive quantity}.
\begin{itemize}
\item Q is the charge of the positive conductor.
\item $V_{+}-V_{-}$ is the positive potential difference between the positively and negatively charged conductors
%(+ charge -> + potential; - charge -> - potential).
\end{itemize}
\end{frame}
%
%
%
\begin{frame}{Calculating the capacitance}
It is {\bf easy to calculate the capacitance for simple geometries}.\\
\vspace{0.2cm}
For example:
\begin{itemize}
\item for a system of parallel plates, or
\item systems with cylindrical or spherical symmetry
\end{itemize}
\begin{columns}
\begin{column}{0.33\textwidth}
\begin{center}
\includegraphics[width=0.75\textwidth]{./images/schematics/capacitors_parallel_plate_1.png}\\
\end{center}
\end{column}
\begin{column}{0.33\textwidth}
\begin{center}
\includegraphics[width=0.75\textwidth]{./images/schematics/capacitors_cylindrical_1.png}\\
\end{center}
\end{column}
\begin{column}{0.33\textwidth}
\begin{center}
\includegraphics[width=0.75\textwidth]{./images/schematics/capacitors_spherical_1.png}\\
\end{center}
\end{column}
\end{columns}
\vspace{0.2cm}
In this lecture we will study the parallel plate capacitor in some detail.\\
\vspace{0.2cm}
But, first, we will discuss how we can go about calculating the capacitance in all cases.\\
\end{frame}
%
%
%
\begin{frame}{Calculating the capacitance}
For system that exhibits some spatial symmetry,
Gauss' law in integral form provides an easy way to calculate the electric field $\vec{E}$
and express it in terms of the charge Q stored in one of the conductors
(by using an appropriate Gaussian surface):
\begin{equation*}
\oint_{S} \vec{E} \cdot d\vec{S} = \frac{Q}{\epsilon_0}
\end{equation*}
If $\vec{E}$ is known, one can calculate the potential difference V between the two conductors as:
\begin{equation*}
V := {\Delta}V = V_{+} - V_{-} = - \int_{-}^{+} \vec{E} \cdot d\vec{\ell}
\end{equation*}
Knowing the charge Q in each conductor and
the potential difference V between the two conductors,
we calculate the capacitance C:
\begin{equation*}
C = \frac{Q}{V}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{A simple system: Parallel plate capacitor}
We will study a simple system: The {\bf parallel plate capacitor}.\\
It consists of two planar conductors with infinitesimally small thickness.\\
\vspace{0.2cm}
\begin{columns}
\begin{column}{0.40\textwidth}
\begin{center}
\includegraphics[width=0.94\textwidth]{./images/schematics/parallel_plate_capacitor.png}\\
\end{center}
\end{column}
\begin{column}{0.60\textwidth}
{\small
Assume that:
\begin{itemize}
{\small
\item Each plate has an area A.
\item The two plates are at a distance d apart.
\item The plates have a surface charge density $\sigma$ and they are oppositely charged:
\begin{itemize}
\item one plate has a charge $Q = \sigma A$, while
\item the other has charge $-Q = -\sigma A$
\end{itemize}
\item The +Q plate is at x=0, while the -Q plate is at x=d.
\item For now, let's consider that the two plates are separated by vacuum.
}
\end{itemize}
}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{A simple system: Parallel plate capacitor}
We {\bf consider ideal systems} (*):
They produce symmetric field with no fringe effects (see Fig. (a)) at the edges.\\
\vspace{0.1cm}
The field produced by the parallel plate capacitor is shown in Fig. (b).\\
\begin{center}
\includegraphics[width=0.70\textwidth]{./images/schematics/parallel_plate_capacitor_field.png}\\
\end{center}
\noindent\rule{2cm}{0.4pt}\\
{\scriptsize
(*) Our main emphasis is on the concepts.
}
\end{frame}
%
%
%
\begin{frame}{Capacitance of parallel plate capacitor}
Consider the Gaussian surface shown below (dashed lines) around the plate with positive charge Q = $\sigma$A.\\
\vspace{0.1cm}
Gauss's law gives us the electric field $\vec{E}$ between the two plates.\\
\vspace{0.2cm}
\begin{columns}
\begin{column}{0.30\textwidth}
\begin{center}
\includegraphics[width=0.99\textwidth]{./images/schematics/parallel_plate_capacitor_gaussian_surface.png}\\
\end{center}
\end{column}
\begin{column}{0.70\textwidth}
\begin{equation*}
\oint_{A} \vec{E} \cdot d\vec{S} = \frac{Q_{enc}}{\epsilon_0} \Rightarrow
\oint_{A} \big( E \hat{x} \big) \cdot \big( dS \hat{x} \big) = \frac{\sigma A}{\epsilon_0} \Rightarrow
\end{equation*}
\begin{equation*}
E (\hat{x} \cdot \hat{x}) \oint_{A} dS = \frac{\sigma A}{\epsilon_0} \xRightarrow{\hat{x}\cdot\hat{x}=1}
E A = \frac{\sigma A}{\epsilon_0} \Rightarrow
\end{equation*}
\begin{equation*}
{\color{magenta} \vec{E} = \frac{\sigma}{\epsilon_0} \hat{x} }
\end{equation*}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Capacitance of parallel plate capacitor}
The potential difference V between the two plates is given by the following path
integral of the electric field (notice the sign conventions):
\begin{equation*}
V = V_{+} - V_{-} = - \int_{-}^{+} \vec{E} \cdot d\vec{\ell}
\end{equation*}
Since V is path-independent, I will choose a path (from the negative to the positive plate)
that simplies the calculation (shown in blue below).
\begin{columns}
\begin{column}{0.25\textwidth}
\begin{center}
\includegraphics[width=0.99\textwidth]{./images/schematics/parallel_plate_capacitor_path_integral.png}\\
\end{center}
\end{column}
\begin{column}{0.75\textwidth}
\begin{equation*}
V = - \int_{d}^{0} \big( E \hat{x} \big) \cdot \Big( dx \hat{x} \Big) \Rightarrow
\end{equation*}
\begin{equation*}
V = - E (\hat{x} \cdot \hat{x}) \int_{d}^{0} dx \Rightarrow
V = E d \xRightarrow{E = \frac{\sigma}{\epsilon_0}}
\end{equation*}
\begin{equation*}
{\color{magenta} V = \frac{\sigma d}{\epsilon_0} }
\end{equation*}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Capacitance of parallel plate capacitor}
\begin{columns}
\begin{column}{0.30\textwidth}
\begin{center}
\includegraphics[width=0.80\textwidth]{./images/schematics/parallel_plate_capacitor.png}\\
\vspace{0.2cm}
{\scriptsize
Capacitance (example):\\
A parallel plate capacitor with plates of area A = 100 mm$^2$ separated by a distance d = 10 mm
has a capacitance of 0.0885 pF.\\
If the potential difference between the two plates is 1 V
this capacitor can hold charge of 0.0885 pC.\\
}
\end{center}
\end{column}
\begin{column}{0.70\textwidth}
Using Gauss' law we calculated the field between the two plates:
\begin{equation*}
\vec{E} = \frac{\sigma}{\epsilon_0} \hat{x}
\end{equation*}
This allowed us to calculate the potential difference between the two plates:
\begin{equation*}
V = \frac{\sigma d}{\epsilon_0}
\end{equation*}
Therefore, the capacitance is:
\begin{equation*}
C = \frac{Q}{{\Delta}V} = \frac{\sigma A}{\sigma d / \epsilon_0} \Rightarrow {\color{magenta} C = \epsilon_0 \frac{A}{d}}
\end{equation*}