-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathslides_lecture07_summary.tex
336 lines (271 loc) · 9.86 KB
/
slides_lecture07_summary.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
\renewcommand{\summarizedlecture}{7 }
%
%
%
\begin{frame}{Lecture \summarizedlecture revision}
In the last lecture:\\
\begin{itemize}
\item We completed the study of {\bf Maxwell's eqs. in materials (for static fields)}
and emphasized the analogies between electrostatics and magnetostatics.
\vspace{0.2cm}
\item We discussed the magnetic properties of materials
({\bf diamagnetism}, {\bf paramagnetism} and {\bf ferromagnetism})
and developed arguments to understand the physical origins.
\vspace{0.2cm}
\item We found out how to {\bf extend Maxwell's eqs. in vacuum}
in the case of {\bf time-dependent fields}.
\end{itemize}
\end{frame}
%
%
%
\begin{frame}{Lecture \summarizedlecture revision (Magnetic moment / magnetization)}
\begin{columns}
\begin{column}{0.25\textwidth}
\begin{center}
\includegraphics[width=0.95\textwidth]{./images/schematics/magnetic_dipole_moment_00.jpg}\\
\end{center}
\end{column}
\begin{column}{0.70\textwidth}
We defined the {\bf magnetic dipole moment} $\vec{m}$ as:
\begin{equation*}
\vec{m} = I \vec{S}
\end{equation*}
\end{column}
\end{columns}
\vspace{0.2cm}
An external magnetic field $\vec{B}$ exerts a torque $\vec{T}$ on a magnetic dipole $\vec{m}$ which is given by:
\begin{equation*}
\vec{T} = \vec{m} \times \vec{B}
\end{equation*}
This will tend to {\bf align} the previously randomised {\bf magnetic moments}
and {\bf create magnetisation at a macroscopic level}.\\
\vspace{0.2cm}
We define {\bf magnetisation} $\vec{M}$ as the amount of {\bf magnetic dipole moment per unit volume}.
\end{frame}
%
%
%
\begin{frame}{Lecture \summarizedlecture revision (Magnetization-induced currents)}
The {\bf magnetisation induces surface and volume currents}.\\
\vspace{0.3cm}
We can easily be convinced, although we will not show it mathematically,
that the {\bf density of the surface current} is:
\begin{equation*}
j_{m}^{surf} = \vec{M} \times \hat{n}
\end{equation*}
\vspace{0.1cm}
whereas the {\bf density of the volume current} is:
\begin{equation*}
j_{m}^{vol} = \vec{\nabla} \times \vec{M}
\end{equation*}
\begin{center}
\includegraphics[width=0.98\textwidth]{./images/schematics/magnetization_currents_01.png}\\
\end{center}
\end{frame}
%
%
%
\begin{frame}{Lecture \summarizedlecture revision (Ampere's law in materials)}
We started from Ampere's law in vacuum:
\begin{equation*}
\vec{\nabla} \times \vec{B} = \mu_0 \vec{j}
\end{equation*}
By writing the total current density $\vec{j}$ as the vector sum of the free ($\vec{j}_{f}$)
and magnetization ($\vec{j}_{m}$) current densities,
and expressing $\vec{j}_{m}$ in terms of the
magnetization field $\vec{M}$ ($\displaystyle \vec{j}_{m} = \vec{\nabla} \times \vec{M}$),
we finally wrote Ampere's law as:
\begin{equation*}
\vec{\nabla} \times \Big( \frac{\vec{B}}{\mu_0} - \vec{M} \Big) = \vec{j}_{f}
\end{equation*}
We defined the {\bf magnetic field strength} or {\bf magnetic field intensity} $\vec{H}$ as:
\begin{equation*}
\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M}
\end{equation*}
In SI, the quantity $\displaystyle \vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M}$ has {\bf units of A/m}.\\
\end{frame}
%
%
%
\begin{frame}{Lecture \summarizedlecture revision (Linear materials)}
Ampere's law in materials is:
$\displaystyle \vec{\nabla} \times \Big( \frac{\vec{B}}{\mu_0} - \vec{M} \Big) = \mu_0 \vec{j}_{f}$\\
\vspace{0.1cm}
If the analogy with electrostatics was exact,
we would write $\vec{M}$ in terms of $\vec{B}$.
However, this is where the analogy breaks.
Instead we typically write:
\begin{equation*}
{\color{magenta}
\vec{M} = \chi_{m} \vec{H}
}
\end{equation*}
where $\chi_m$ is the {\bf magnetic susceptibility}.
For {\bf linear materials}, $\chi_m$ is a constant independent of the value of $\vec{H}$.
Expressing $\vec{B}$ in terms of $\vec{H}$:
\begin{equation*}
\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M} \Rightarrow
\vec{B} = \mu_0 \Big( \vec{H} + \vec{M} \Big) \xRightarrow{\vec{M} = \chi_{m} \vec{H}}
\vec{B} = \Big(1 + \chi_{m} \Big) \mu_0 \vec{H} \Rightarrow
\end{equation*}
\begin{equation*}
\vec{B} = \mu_r \mu_0 \vec{H} \Rightarrow
{\color{magenta}
\vec{B} = \mu \vec{H}
}
\end{equation*}
where $\mu_r = 1+\chi_{\mu}$
is the {\bf relative permeability} (dimensionless) and
$\mu = \mu_r \mu_0$ is the {\bf permeability} of the material
(SI unit: $V \cdot s \cdot A^{-1} \cdot m^{-1}$).\\
\end{frame}
%
%
%
\begin{frame}{Lecture \summarizedlecture revision (Correspondence between quantities)}
{
\setlength{\extrarowheight}{8pt}
\setlength{\arraycolsep}{5pt}
\begin{center}
\begin{table}[H]
\begin{tabular}{c|c||c|c}
\hline
\multicolumn{2}{c||}{\bf Electrostatics} &
\multicolumn{2}{c} {\bf Magnetostatics} \\
\hline
{\scriptsize electric dipole moment} &
$\vec{p} = q \vec{d}$ &
$\vec{m} = I \vec{S}$ &
{\scriptsize magnetic dipole moment} \\
\hline
{\scriptsize torque within $\vec{E}$ field} &
$\vec{T} = \vec{p} \times \vec{E}$ &
$\vec{T} = \vec{m} \times \vec{B}$ &
{\scriptsize torque within a $\vec{B}$ field} \\
\hline
{\scriptsize polarization} &
$\vec{P} = \frac{(e.d.m)}{volume}$ &
$\vec{M} = \frac{(m.d.m)}{volume}$ &
{\scriptsize magnetization} \\
\hline
{\scriptsize surface charge density} &
$\sigma_{P} = \vec{P} \cdot \hat{n}$ &
$j_{m}^{surf} = \vec{M} \times \hat{n}$ &
{\scriptsize surface current density} \\
\hline
{\scriptsize volume charge density} &
$\rho_{P} = - \vec{\nabla} \cdot \vec{P}$ &
$j_{m}^{vol} = \vec{\nabla} \times \vec{M}$ &
{\scriptsize volume current density} \\
\hline
{\scriptsize electric displacement} &
$\vec{D} = \epsilon_0 \vec{E} + \vec{P}$ &
$\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M}$ &
{\scriptsize magnetizing field} \\
\hline
\multirow{2}{*}{\scriptsize Gauss' law in materials} &
$\vec{\nabla} \cdot \vec{D} = \rho_{f}$ &
$\vec{\nabla} \times \vec{H} = \vec{j}_{f}$ &
\multirow{2}{*}{\scriptsize Ampere's law in materials} \\
\hhline{~--~}
&
$\oint_{S} \vec{D} \cdot d\vec{S} = Q_{f}$ &
$\oint_{L} \vec{H} \cdot d\vec{\ell} = I_{f}$ &
\\
\hline
\end{tabular}
\end{table}
\end{center}
}
\end{frame}
%
%
%
\begin{frame}{Lecture \summarizedlecture revision (Magnetic properties of materials)}
\begin{itemize}
\item We also discussed the {\bf magnetic properties of materials}
and developed (classical) arguments to understand the {\bf physical origins}.
\item The material which has the {\bf most striking and well known
magnetic properties is iron (Fe).}
\begin{itemize}
\item Nickel (Ni), Cobalt (Co), Gadolinium (Gd) and Dysprosium (Dy) behave similarly.
We call these materials {\bf \color{magenta} ferromagnets}.
\item Not only these materials can have a significant magnetisation when inside an
external magnetic field, they also {\bf retain their magnetisation in the absence
of an external magnetic field.}
\end{itemize}
\item But {\bf other substances get magnetised too} (water, wood, frogs,...)
\begin{itemize}
\item The magnetic effects for these materials are {\bf very very weak!}
\item Moreover, water, wood, and frogs {\bf do not remain magnetized} once the external
magnetic field is removed.
\item In a presense of an external magnetic field these substances can be magnetised
either in the direction of the field ({\color{magenta} {\bf paramagnetic}} substances),
or opposite to it ({\color{magenta} {\bf diamagnetic}} substances).
\end{itemize}
\end{itemize}
\end{frame}
%
%
%
\begin{frame}{Lecture \summarizedlecture revision (Maxwell's eqs. for the static case)}
{\small
\begin{center}
{
\begin{table}[H]
\begin{tabular}{|l|c|c|}
\hline
\multicolumn{3}{|l|} {
{\color{magenta}
{\bf Static case in vacuum}
}
}\\
\hline
{\bf Gauss's law} &
$\displaystyle \oint \vec{E} \cdot d\vec{S} = \frac{1}{\epsilon_0} \int \rho d\tau$ &
$\displaystyle \vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0}$ \\
{\bf Circuital law} &
$\displaystyle \oint \vec{E} \cdot d\vec{\ell} = 0$ &
$\displaystyle \vec{\nabla} \times \vec{E} = 0$ \\
{\bf Gauss's law} (magn.) &
$\displaystyle \oint \vec{B} \cdot d\vec{S} = 0$ &
$\displaystyle \vec{\nabla} \cdot \vec{B} = 0$ \\
{\bf Ampere's law} &
$\displaystyle \oint \vec{B} \cdot d\vec{\ell} = \mu_{0} \int \vec{j} \cdot d\vec{S}$ &
$\displaystyle \vec{\nabla} \times \vec{B} = \mu_{0} \vec{j}$ \\
\hline
\end{tabular}
\end{table}
}
\end{center}
\begin{center}
{
\begin{table}[H]
\begin{tabular}{|l|c|c|}
\hline
\multicolumn{3}{|l|} {
{\color{magenta}
{\bf Static case within materials}
}
}\\
\hline
{\bf Gauss's law} &
$\displaystyle \oint \vec{D} \cdot d\vec{S} = \int \rho_{f} d\tau$ &
$\displaystyle \vec{\nabla} \cdot \vec{D} = \rho_{f}$ \\
{\bf Circuital law} &
$\displaystyle \oint \vec{E} \cdot d\vec{\ell} = 0$ &
$\displaystyle \vec{\nabla} \times \vec{E} = 0$ \\
{\bf Gauss's law} (magn.) &
$\displaystyle \oint \vec{B} \cdot d\vec{S} = 0$ &
$\displaystyle \vec{\nabla} \cdot \vec{B} = 0$ \\
{\bf Ampere's law} &
$\displaystyle \oint \vec{H} \cdot d\vec{\ell} = \int \vec{j}_{f} \cdot d\vec{S}$ &
$\displaystyle \vec{\nabla} \times \vec{H} = \vec{j}_{f}$ \\
\hline
\end{tabular}
\end{table}
}
\end{center}
}
\end{frame}