forked from mvaligursky/webgl-parallel_shader_compile
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
1540 lines (1463 loc) · 68.8 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!doctype html>
<html>
<body>
<button onclick="compileManyShaders(10)">Compile 10</button>
<button onclick="compileManyShaders(50)">Compile 50</button>
<div>
<canvas width = "400" height = "400" id = "my_Canvas"></canvas>
</div>
<script>
var canvas = document.getElementById('my_Canvas');
gl = canvas.getContext('webgl2');
console.log("KHR_parallel_shader_compile supported: ", gl.getExtension('KHR_parallel_shader_compile'));
var vertices = [ -1,-1,-1, 1,-1,-1, 1, 1,-1 ];
var colors = [ 1,1,1, 1,1,1, 1,1,1 ];
var indices = [ 0,1,2 ];
var vertex_buffer = gl.createBuffer ();
gl.bindBuffer(gl.ARRAY_BUFFER, vertex_buffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(vertices), gl.STATIC_DRAW);
var color_buffer = gl.createBuffer ();
gl.bindBuffer(gl.ARRAY_BUFFER, color_buffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(colors), gl.STATIC_DRAW);
var index_buffer = gl.createBuffer ();
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, index_buffer);
gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, new Uint16Array(indices), gl.STATIC_DRAW);
var vertCode = 'attribute vec3 position;'+
'uniform mat4 Pmatrix;'+
'uniform mat4 Vmatrix;'+
'uniform mat4 Mmatrix;'+
'attribute vec3 color;'+
'varying vec3 vColor;'+
'void main(void) { '+
'gl_Position = Pmatrix*Vmatrix*Mmatrix*vec4(position, 1.);'+
'vColor = color;'+
'}';
var fragCode = 'precision mediump float;'+
'varying vec3 vColor;'+
'void main(void) {'+
'gl_FragColor = vec4(vColor, 1.);'+
'}';
var vertShader = gl.createShader(gl.VERTEX_SHADER);
gl.shaderSource(vertShader, vertCode);
gl.compileShader(vertShader);
var fragShader = gl.createShader(gl.FRAGMENT_SHADER);
gl.shaderSource(fragShader, fragCode);
gl.compileShader(fragShader);
var shaderProgram = gl.createProgram();
gl.attachShader(shaderProgram, vertShader);
gl.attachShader(shaderProgram, fragShader);
gl.linkProgram(shaderProgram);
var Pmatrix = gl.getUniformLocation(shaderProgram, "Pmatrix");
var Vmatrix = gl.getUniformLocation(shaderProgram, "Vmatrix");
var Mmatrix = gl.getUniformLocation(shaderProgram, "Mmatrix");
gl.bindBuffer(gl.ARRAY_BUFFER, vertex_buffer);
var position = gl.getAttribLocation(shaderProgram, "position");
gl.vertexAttribPointer(position, 3, gl.FLOAT, false,0,0) ; //position
gl.enableVertexAttribArray(position);
gl.bindBuffer(gl.ARRAY_BUFFER, color_buffer);
var color = gl.getAttribLocation(shaderProgram, "color");
gl.vertexAttribPointer(color, 3, gl.FLOAT, false,0,0) ; //color
gl.enableVertexAttribArray(color);
gl.useProgram(shaderProgram);
function get_projection(angle, a, zMin, zMax) {
var ang = Math.tan((angle*.5)*Math.PI/180);//angle*.5
return [
0.5/ang, 0 , 0, 0,
0, 0.5*a/ang, 0, 0,
0, 0, -(zMax+zMin)/(zMax-zMin), -1,
0, 0, (-2*zMax*zMin)/(zMax-zMin), 0
];
}
var proj_matrix = get_projection(40, canvas.width/canvas.height, 1, 100);
var mov_matrix = [1,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,1];
var view_matrix = [1,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,1];
view_matrix[14] = view_matrix[14]-6; //zoom
function rotateZ(m, angle) {
var c = Math.cos(angle);
var s = Math.sin(angle);
var mv0 = m[0], mv4 = m[4], mv8 = m[8];
m[0] = c*m[0]-s*m[1];
m[4] = c*m[4]-s*m[5];
m[8] = c*m[8]-s*m[9];
m[1] = c*m[1]+s*mv0;
m[5] = c*m[5]+s*mv4;
m[9] = c*m[9]+s*mv8;
}
/*=================SHADER COMPILATION ===========================*/
let shaders = [];
let waitStartTime;
const appStartTime = Date.now();
function compileManyShaders(count) {
console.time('generate');
// generate source code
for (let i = 0; i < count; i++) {
shaders.push({
vsCode: getVS(),
fsCode: getFS(),
index: i
});
}
console.timeEnd('generate');
console.time('compile');
// compile all
shaders.forEach((shader) => {
shader.vertShader = gl.createShader(gl.VERTEX_SHADER);
gl.shaderSource(shader.vertShader, shader.vsCode);
gl.compileShader(shader.vertShader);
shader.fragShader = gl.createShader(gl.FRAGMENT_SHADER);
gl.shaderSource(shader.fragShader, shader.fsCode);
gl.compileShader(shader.fragShader);
});
console.timeEnd('compile');
console.time('link');
// link all
shaders.forEach((shader) => {
shader.program = gl.createProgram();
gl.attachShader(shader.program, shader.vertShader);
gl.attachShader(shader.program, shader.fragShader);
gl.linkProgram(shader.program);
});
console.timeEnd('link');
waitStartTime = Date.now();
}
function waitManyShaders() {
const ext = gl.getExtension('KHR_parallel_shader_compile');
shaders = shaders.filter((shader) => {
let done = true; // without extension assume done
if (ext) {
console.time("COMPLETION_STATUS");
done = gl.getProgramParameter(shader.program, ext.COMPLETION_STATUS_KHR);
console.timeEnd("COMPLETION_STATUS");
if (!done) {
return true; // try next frame
}
}
if (done) {
console.time("LINK_STATUS");
gl.getProgramParameter(shader.program, gl.LINK_STATUS);
console.timeEnd("LINK_STATUS");
}
return !done;
});
console.log('left to finish', shaders.length);
if (!shaders.length) {
console.log('TOTAL WAIT TIME:', Date.now() - waitStartTime, 'ms');
}
}
/*============================================*/
var time_old = 0;
var animate = function(time) {
var dt = time-time_old;
rotateZ(mov_matrix, dt*0.002);
time_old = time;
/*============================================*/
// wait till all shaders are done compiling
if (shaders.length) {
console.log('-------- DT: ', dt, 'ms');
waitManyShaders();
}
/*============================================*/
// render the triangle
gl.enable(gl.DEPTH_TEST);
gl.depthFunc(gl.LEQUAL);
gl.clearColor(0.5, 0.5, 0.5, 0.9);
gl.clearDepth(1.0);
gl.viewport(0.0, 0.0, canvas.width, canvas.height);
gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
gl.uniformMatrix4fv(Pmatrix, false, proj_matrix);
gl.uniformMatrix4fv(Vmatrix, false, view_matrix);
gl.uniformMatrix4fv(Mmatrix, false, mov_matrix);
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, index_buffer);
gl.drawElements(gl.TRIANGLES, indices.length, gl.UNSIGNED_SHORT, 0);
window.requestAnimationFrame(animate);
}
function getVS() {
return `#version 300 es
#define attribute in
#define varying out
#define texture2D texture
#define GL2
#define VERTEXSHADER
#define SHADER_NAME LitShader
varying vec2 vUV0_1;
varying vec3 vPositionW;
varying vec3 vNormalW;
attribute vec3 vertex_position;
attribute vec3 vertex_normal;
attribute vec4 vertex_tangent;
attribute vec2 vertex_texCoord0;
attribute vec2 vertex_texCoord1;
attribute vec4 vertex_color;
uniform mat4 matrix_viewProjection;
uniform mat4 matrix_model;
uniform mat3 matrix_normal;
vec3 dPositionW;
mat4 dModelMatrix;
mat3 dNormalMatrix;
vec2 getUv0() {
return vertex_texCoord0;
}
uniform vec3 texture_diffuseMapTransform0;
uniform vec3 texture_diffuseMapTransform1;
mat4 getModelMatrix() {
return matrix_model;
}
vec4 getPosition() {
dModelMatrix = getModelMatrix();
vec3 localPos = vertex_position;
vec4 posW = dModelMatrix * vec4(localPos, 1.0);
dPositionW = posW.xyz;
vec4 screenPos;
screenPos = matrix_viewProjection * posW;
return screenPos;
}
vec3 getWorldPosition() {
return dPositionW;
}
vec3 getNormal() {
dNormalMatrix = matrix_normal;
vec3 tempNormal = vertex_normal;
return normalize(dNormalMatrix * tempNormal);
}
void main(void) {
gl_Position = getPosition();
vPositionW = getWorldPosition();
vNormalW = getNormal();
vec2 uv0 = getUv0();
vUV0_1 = vec2(dot(vec3(uv0, 1), texture_diffuseMapTransform0), dot(vec3(uv0, 1), texture_diffuseMapTransform1));
}
`;
}
function getFS() {
return `#version 300 es
precision highp float;
precision highp sampler2DShadow;
#define varying in
out highp vec4 pc_fragColor;
#define gl_FragColor pc_fragColor
#define texture2D texture
#define texture2DBias texture
#define textureCube texture
#define texture2DProj textureProj
#define texture2DLodEXT textureLod
#define texture2DProjLodEXT textureProjLod
#define textureCubeLodEXT textureLod
#define texture2DGradEXT textureGrad
#define texture2DProjGradEXT textureProjGrad
#define textureCubeGradEXT textureGrad
#define textureShadow(res, uv) textureGrad(res, uv, vec2(1, 1), vec2(1, 1))
#define SHADOWMAP_PASS(name) name
#define SHADOWMAP_ACCEPT(name) sampler2DShadow name
#define TEXTURE_PASS(name) name
#define TEXTURE_ACCEPT(name) sampler2D name
#define GL2
#define SUPPORTS_TEXLOD
vec2 getGrabScreenPos(vec4 clipPos) {
vec2 uv = (clipPos.xy / clipPos.w) * 0.5 + 0.5;
return uv;
}
vec2 getImageEffectUV(vec2 uv) {
return uv;
}
#define SHADER_NAME LitShader
#define LIT_SPECULAR
#define LIT_REFLECTIONS
#define LIT_SPECULAR_FRESNEL
#define LIT_CONSERVE_ENERGY
varying vec2 vUV0_1;
varying vec3 vPositionW;
varying vec3 vNormalW;
uniform vec3 view_position;
uniform vec3 light_globalAmbient;
float square(float x) {
return x*x;
}
float saturate(float x) {
return clamp(x, 0.0, 1.0);
}
vec3 saturate(vec3 x) {
return clamp(x, vec3(0.0), vec3(1.0));
}
vec3 detailMode_mul(vec3 c1, vec3 c2) {
return c1 * c2;
}
vec3 detailMode_add(vec3 c1, vec3 c2) {
return c1 + c2;
}
vec3 detailMode_screen(vec3 c1, vec3 c2) {
return 1.0 - (1.0 - c1)*(1.0 - c2);
}
vec3 detailMode_overlay(vec3 c1, vec3 c2) {
return mix(1.0 - 2.0*(1.0 - c1)*(1.0 - c2), 2.0*c1*c2, step(c1, vec3(0.5)));
}
vec3 detailMode_min(vec3 c1, vec3 c2) {
return min(c1, c2);
}
vec3 detailMode_max(vec3 c1, vec3 c2) {
return max(c1, c2);
}
vec4 dReflection;
mat3 dTBN;
vec3 dVertexNormalW;
vec3 dViewDirW;
vec3 dReflDirW;
vec3 dDiffuseLight;
vec3 dSpecularLight;
vec3 dLightDirNormW;
vec3 dLightDirW;
vec3 dLightPosW;
vec3 dShadowCoord;
float dAtten;
float dAttenD;
vec3 dAtten3;
float ccFresnel;
vec3 ccReflection;
vec3 ccSpecularLight;
vec3 sSpecularLight;
vec3 sReflection;
uniform float textureBias;
float dAlpha = 1.0;
vec3 dNormalW;
vec3 dAlbedo;
vec3 dSpecularity;
float dGlossiness;
float dMetalness;
vec3 dEmission;
uniform sampler2D texture_normalMap;
uniform sampler2D texture_diffuseMap;
uniform sampler2D texture_glossMap;
float getSpotEffect(vec3 lightSpotDirW, float lightInnerConeAngle, float lightOuterConeAngle) {
float cosAngle = dot(dLightDirNormW, lightSpotDirW);
return smoothstep(lightOuterConeAngle, lightInnerConeAngle, cosAngle);
}
float getFalloffWindow(float lightRadius) {
float sqrDist = dot(dLightDirW, dLightDirW);
float invRadius = 1.0 / lightRadius;
return square( saturate( 1.0 - square( sqrDist * square(invRadius) ) ) );
}
float getFalloffInvSquared(float lightRadius) {
float sqrDist = dot(dLightDirW, dLightDirW);
float falloff = 1.0 / (sqrDist + 1.0);
float invRadius = 1.0 / lightRadius;
falloff *= 16.0;
falloff *= square( saturate( 1.0 - square( sqrDist * square(invRadius) ) ) );
return falloff;
}
float getFalloffLinear(float lightRadius) {
float d = length(dLightDirW);
return max(((lightRadius - d) / lightRadius), 0.0);
}
void getLightDirPoint(vec3 lightPosW) {
dLightDirW = vPositionW - lightPosW;
dLightDirNormW = normalize(dLightDirW);
dLightPosW = lightPosW;
}
#define AREA_LIGHTS
uniform highp sampler2D areaLightsLutTex1;
uniform highp sampler2D areaLightsLutTex2;
uniform float tbnBasis;
void getTBN() {
vec2 uv = vUV0_1;
vec3 dp1 = dFdx( vPositionW );
vec3 dp2 = dFdy( vPositionW );
vec2 duv1 = dFdx( uv );
vec2 duv2 = dFdy( uv );
vec3 dp2perp = cross( dp2, dVertexNormalW );
vec3 dp1perp = cross( dVertexNormalW, dp1 );
vec3 T = dp2perp * duv1.x + dp1perp * duv2.x;
vec3 B = dp2perp * duv1.y + dp1perp * duv2.y;
float denom = max( dot(T, T), dot(B, B) );
float invmax = (denom == 0.0) ? 0.0 : tbnBasis / sqrt( denom );
dTBN = mat3(T * invmax, -B * invmax, dVertexNormalW );
}
const float PI = 3.141592653589793;
vec2 toSpherical(vec3 dir) {
return vec2(dir.xz == vec2(0.0) ? 0.0 : atan(dir.x, dir.z), asin(dir.y));
}
vec2 toSphericalUv(vec3 dir) {
vec2 uv = toSpherical(dir) / vec2(PI * 2.0, PI) + 0.5;
return vec2(uv.x, 1.0 - uv.y);
}
vec3 decodeLinear(vec4 raw) {
return raw.rgb;
}
float decodeGamma(float raw) {
return pow(raw, 2.2);
}
vec3 decodeGamma(vec3 raw) {
return pow(raw, vec3(2.2));
}
vec3 decodeGamma(vec4 raw) {
return pow(raw.xyz, vec3(2.2));
}
vec3 decodeRGBM(vec4 raw) {
vec3 color = (8.0 * raw.a) * raw.rgb;
return color * color;
}
vec3 decodeRGBP(vec4 raw) {
vec3 color = raw.rgb * (-raw.a * 7.0 + 8.0);
return color * color;
}
vec3 decodeRGBE(vec4 raw) {
if (raw.a == 0.0) {
return vec3(0.0, 0.0, 0.0);
}
else {
return raw.xyz * pow(2.0, raw.w * 255.0 - 128.0);
}
}
vec4 passThrough(vec4 raw) {
return raw;
}
float gammaCorrectInput(float color) {
return decodeGamma(color);
}
vec3 gammaCorrectInput(vec3 color) {
return decodeGamma(color);
}
vec4 gammaCorrectInput(vec4 color) {
return vec4(decodeGamma(color.xyz), color.w);
}
vec3 gammaCorrectOutput(vec3 color) {
return pow(color + 0.0000001, vec3(1.0 / 2.2));
}
uniform float exposure;
vec3 toneMap(vec3 color) {
float tA = 2.51;
float tB = 0.03;
float tC = 2.43;
float tD = 0.59;
float tE = 0.14;
vec3 x = color * exposure;
return (x*(tA*x+tB))/(x*(tC*x+tD)+tE);
}
float dBlendModeFogFactor = 1.0;
vec3 addFog(vec3 color) {
return color;
}
vec3 unpackNormal(vec4 nmap) {
return nmap.xyz * 2.0 - 1.0;
}
#undef MAPFLOAT
#undef MAPCOLOR
#undef MAPVERTEX
#undef MAPTEXTURE
#undef MAPINVERT
vec3 addNormalDetail(vec3 normalMap) {
return normalMap;
}
#undef MAPFLOAT
#undef MAPCOLOR
#undef MAPVERTEX
#define MAPTEXTURE
#undef MAPINVERT
uniform float material_bumpiness;
void getNormal() {
vec3 normalMap = unpackNormal(texture2DBias(texture_normalMap, vUV0_1, textureBias));
normalMap = mix(vec3(0.0, 0.0, 1.0), normalMap, material_bumpiness);
dNormalW = normalize(dTBN * addNormalDetail(normalMap));
}
#undef MAPFLOAT
#undef MAPCOLOR
#undef MAPVERTEX
#undef MAPTEXTURE
#undef MAPINVERT
vec3 addAlbedoDetail(vec3 albedo) {
return albedo;
}
#undef MAPFLOAT
#undef MAPCOLOR
#undef MAPVERTEX
#define MAPTEXTURE
#undef MAPINVERT
void getAlbedo() {
dAlbedo = vec3(1.0);
vec3 albedoBase = decodeGamma(texture2DBias(texture_diffuseMap, vUV0_1, textureBias)).rgb;
dAlbedo *= addAlbedoDetail(albedoBase);
}
#define MAPFLOAT
#undef MAPCOLOR
#undef MAPVERTEX
#undef MAPTEXTURE
#undef MAPINVERT
uniform float material_metalness;
void getMetalness() {
float metalness = 1.0;
metalness *= material_metalness;
dMetalness = metalness;
}
void getSpecularity() {
dSpecularity = vec3(1);
}
#define MAPFLOAT
#undef MAPCOLOR
#undef MAPVERTEX
#define MAPTEXTURE
#undef MAPINVERT
uniform float material_gloss;
void getGlossiness() {
dGlossiness = 1.0;
dGlossiness *= material_gloss;
dGlossiness *= texture2DBias(texture_glossMap, vUV0_1, textureBias).g;
dGlossiness += 0.0000001;
}
#undef MAPFLOAT
#define MAPCOLOR
#undef MAPVERTEX
#undef MAPTEXTURE
#undef MAPINVERT
uniform vec3 material_emissive;
void getEmission() {
dEmission = vec3(1.0);
dEmission *= material_emissive;
}
vec3 cubeMapRotate(vec3 refDir) {
return refDir;
}
vec3 cubeMapProject(vec3 dir) {
return cubeMapRotate(dir);
}
uniform float skyboxIntensity;
vec3 processEnvironment(vec3 color) {
return color * skyboxIntensity;
}
uniform float material_f0;
void getMetalnessModulate() {
vec3 dielectricF0 = material_f0 * dSpecularity;
dSpecularity = mix(dielectricF0, dAlbedo, dMetalness);
dAlbedo *= 1.0 - dMetalness;
}
vec3 getFresnel(float cosTheta, vec3 f0) {
float fresnel = pow(1.0 - max(cosTheta, 0.0), 5.0);
float glossSq = dGlossiness * dGlossiness;
vec3 ret = f0 + (max(vec3(glossSq), f0) - f0) * fresnel;
return ret;
}
float getFresnelCC(float cosTheta) {
float fresnel = pow(1.0 - max(cosTheta, 0.0), 5.0);
return 0.04 + (1.0 - 0.04) * fresnel;
}
const float atlasSize = 512.0;
const float seamSize = 1.0 / atlasSize;
vec2 mapUv(vec2 uv, vec4 rect) {
return vec2(mix(rect.x + seamSize, rect.x + rect.z - seamSize, uv.x), mix(rect.y + seamSize, rect.y + rect.w - seamSize, uv.y));
}
vec2 mapRoughnessUv(vec2 uv, float level) {
float t = 1.0 / exp2(level);
return mapUv(uv, vec4(0, 1.0 - t, t, t * 0.5));
}
vec2 mapShinyUv(vec2 uv, float level) {
float t = 1.0 / exp2(level);
return mapUv(uv, vec4(1.0 - t, 1.0 - t, t, t * 0.5));
}
#define ENV_ATLAS
uniform sampler2D texture_envAtlas;
uniform float material_reflectivity;
float shinyMipLevel(vec2 uv) {
vec2 dx = dFdx(uv);
vec2 dy = dFdy(uv);
vec2 uv2 = vec2(fract(uv.x + 0.5), uv.y);
vec2 dx2 = dFdx(uv2);
vec2 dy2 = dFdy(uv2);
float maxd = min(max(dot(dx, dx), dot(dy, dy)), max(dot(dx2, dx2), dot(dy2, dy2)));
return clamp(0.5 * log2(maxd) - 1.0 + textureBias, 0.0, 5.0);
}
vec3 calcReflection(vec3 tReflDirW, float tGlossiness) {
vec3 dir = cubeMapProject(tReflDirW) * vec3(-1.0, 1.0, 1.0);
vec2 uv = toSphericalUv(dir);
float level = saturate(1.0 - tGlossiness) * 5.0;
float ilevel = floor(level);
float level2 = shinyMipLevel(uv * atlasSize);
float ilevel2 = floor(level2);
vec2 uv0, uv1;
float weight;
if (ilevel == 0.0) {
uv0 = mapShinyUv(uv, ilevel2);
uv1 = mapShinyUv(uv, ilevel2 + 1.0);
weight = level2 - ilevel2;
}
else {
uv0 = uv1 = mapRoughnessUv(uv, ilevel);
weight = 0.0;
}
vec3 linearA = decodeRGBP(texture2D(texture_envAtlas, uv0));
vec3 linearB = decodeRGBP(texture2D(texture_envAtlas, uv1));
vec3 linear0 = mix(linearA, linearB, weight);
vec3 linear1 = decodeRGBP(texture2D(texture_envAtlas, mapRoughnessUv(uv, ilevel + 1.0)));
return processEnvironment(mix(linear0, linear1, level - ilevel));
}
void addReflection() {
dReflection += vec4(calcReflection(dReflDirW, dGlossiness), material_reflectivity);
}
vec2 getCubemapFaceCoordinates(const vec3 dir, out float faceIndex, out vec2 tileOffset) {
vec3 vAbs = abs(dir);
float ma;
vec2 uv;
if (vAbs.z >= vAbs.x && vAbs.z >= vAbs.y) {
faceIndex = dir.z < 0.0 ? 5.0 : 4.0;
ma = 0.5 / vAbs.z;
uv = vec2(dir.z < 0.0 ? -dir.x : dir.x, -dir.y);
tileOffset.x = 2.0;
tileOffset.y = dir.z < 0.0 ? 1.0 : 0.0;
}
else if(vAbs.y >= vAbs.x) {
faceIndex = dir.y < 0.0 ? 3.0 : 2.0;
ma = 0.5 / vAbs.y;
uv = vec2(dir.x, dir.y < 0.0 ? -dir.z : dir.z);
tileOffset.x = 1.0;
tileOffset.y = dir.y < 0.0 ? 1.0 : 0.0;
}
else {
faceIndex = dir.x < 0.0 ? 1.0 : 0.0;
ma = 0.5 / vAbs.x;
uv = vec2(dir.x < 0.0 ? dir.z : -dir.z, -dir.y);
tileOffset.x = 0.0;
tileOffset.y = dir.x < 0.0 ? 1.0 : 0.0;
}
return uv * ma + 0.5;
}
vec2 getCubemapAtlasCoordinates(const vec3 omniAtlasViewport, float shadowEdgePixels, float shadowTextureResolution, const vec3 dir) {
float faceIndex;
vec2 tileOffset;
vec2 uv = getCubemapFaceCoordinates(dir, faceIndex, tileOffset);
float atlasFaceSize = omniAtlasViewport.z;
float tileSize = shadowTextureResolution * atlasFaceSize;
float offset = shadowEdgePixels / tileSize;
uv = uv * vec2(1.0 - offset * 2.0) + vec2(offset * 1.0);
uv *= atlasFaceSize;
uv += tileOffset * atlasFaceSize;
uv += omniAtlasViewport.xy;
return uv;
}
vec3 lessThan2(vec3 a, vec3 b) {
return clamp((b - a)*1000.0, 0.0, 1.0);
}
#define UNPACKFLOAT
float unpackFloat(vec4 rgbaDepth) {
const vec4 bitShift = vec4(1.0 / (256.0 * 256.0 * 256.0), 1.0 / (256.0 * 256.0), 1.0 / 256.0, 1.0);
return dot(rgbaDepth, bitShift);
}
float _getShadowPCF3x3(SHADOWMAP_ACCEPT(shadowMap), vec3 shadowParams) {
float z = dShadowCoord.z;
vec2 uv = dShadowCoord.xy * shadowParams.x;
float shadowMapSizeInv = 1.0 / shadowParams.x;
vec2 base_uv = floor(uv + 0.5);
float s = (uv.x + 0.5 - base_uv.x);
float t = (uv.y + 0.5 - base_uv.y);
base_uv -= vec2(0.5);
base_uv *= shadowMapSizeInv;
float sum = 0.0;
float uw0 = (3.0 - 2.0 * s);
float uw1 = (1.0 + 2.0 * s);
float u0 = (2.0 - s) / uw0 - 1.0;
float u1 = s / uw1 + 1.0;
float vw0 = (3.0 - 2.0 * t);
float vw1 = (1.0 + 2.0 * t);
float v0 = (2.0 - t) / vw0 - 1.0;
float v1 = t / vw1 + 1.0;
u0 = u0 * shadowMapSizeInv + base_uv.x;
v0 = v0 * shadowMapSizeInv + base_uv.y;
u1 = u1 * shadowMapSizeInv + base_uv.x;
v1 = v1 * shadowMapSizeInv + base_uv.y;
sum += uw0 * vw0 * textureShadow(shadowMap, vec3(u0, v0, z));
sum += uw1 * vw0 * textureShadow(shadowMap, vec3(u1, v0, z));
sum += uw0 * vw1 * textureShadow(shadowMap, vec3(u0, v1, z));
sum += uw1 * vw1 * textureShadow(shadowMap, vec3(u1, v1, z));
sum *= 1.0f / 16.0;
return sum;
}
float getShadowPCF3x3(SHADOWMAP_ACCEPT(shadowMap), vec3 shadowParams) {
return _getShadowPCF3x3(SHADOWMAP_PASS(shadowMap), shadowParams);
}
float getShadowSpotPCF3x3(SHADOWMAP_ACCEPT(shadowMap), vec4 shadowParams) {
return _getShadowPCF3x3(SHADOWMAP_PASS(shadowMap), shadowParams.xyz);
}
float _getShadowPoint(samplerCube shadowMap, vec4 shadowParams, vec3 dir) {
vec3 tc = normalize(dir);
vec3 tcAbs = abs(tc);
vec4 dirX = vec4(1, 0, 0, tc.x);
vec4 dirY = vec4(0, 1, 0, tc.y);
float majorAxisLength = tc.z;
if ((tcAbs.x > tcAbs.y) && (tcAbs.x > tcAbs.z)) {
dirX = vec4(0, 0, 1, tc.z);
dirY = vec4(0, 1, 0, tc.y);
majorAxisLength = tc.x;
}
else if ((tcAbs.y > tcAbs.x) && (tcAbs.y > tcAbs.z)) {
dirX = vec4(1, 0, 0, tc.x);
dirY = vec4(0, 0, 1, tc.z);
majorAxisLength = tc.y;
}
float shadowParamsInFaceSpace = ((1.0/shadowParams.x) * 2.0) * abs(majorAxisLength);
vec3 xoffset = (dirX.xyz * shadowParamsInFaceSpace);
vec3 yoffset = (dirY.xyz * shadowParamsInFaceSpace);
vec3 dx0 = -xoffset;
vec3 dy0 = -yoffset;
vec3 dx1 = xoffset;
vec3 dy1 = yoffset;
mat3 shadowKernel;
mat3 depthKernel;
depthKernel[0][0] = unpackFloat(textureCube(shadowMap, tc + dx0 + dy0));
depthKernel[0][1] = unpackFloat(textureCube(shadowMap, tc + dx0));
depthKernel[0][2] = unpackFloat(textureCube(shadowMap, tc + dx0 + dy1));
depthKernel[1][0] = unpackFloat(textureCube(shadowMap, tc + dy0));
depthKernel[1][1] = unpackFloat(textureCube(shadowMap, tc));
depthKernel[1][2] = unpackFloat(textureCube(shadowMap, tc + dy1));
depthKernel[2][0] = unpackFloat(textureCube(shadowMap, tc + dx1 + dy0));
depthKernel[2][1] = unpackFloat(textureCube(shadowMap, tc + dx1));
depthKernel[2][2] = unpackFloat(textureCube(shadowMap, tc + dx1 + dy1));
vec3 shadowZ = vec3(length(dir) * shadowParams.w + shadowParams.z);
shadowKernel[0] = vec3(lessThan2(depthKernel[0], shadowZ));
shadowKernel[1] = vec3(lessThan2(depthKernel[1], shadowZ));
shadowKernel[2] = vec3(lessThan2(depthKernel[2], shadowZ));
vec2 uv = (vec2(dirX.w, dirY.w) / abs(majorAxisLength)) * 0.5;
vec2 fractionalCoord = fract( uv * shadowParams.x );
shadowKernel[0] = mix(shadowKernel[0], shadowKernel[1], fractionalCoord.x);
shadowKernel[1] = mix(shadowKernel[1], shadowKernel[2], fractionalCoord.x);
vec4 shadowValues;
shadowValues.x = mix(shadowKernel[0][0], shadowKernel[0][1], fractionalCoord.y);
shadowValues.y = mix(shadowKernel[0][1], shadowKernel[0][2], fractionalCoord.y);
shadowValues.z = mix(shadowKernel[1][0], shadowKernel[1][1], fractionalCoord.y);
shadowValues.w = mix(shadowKernel[1][1], shadowKernel[1][2], fractionalCoord.y);
return 1.0 - dot( shadowValues, vec4( 1.0 ) ) * 0.25;
}
float getShadowPointPCF3x3(samplerCube shadowMap, vec4 shadowParams) {
return _getShadowPoint(shadowMap, shadowParams, dLightDirW);
}
float _getShadowPCF5x5(SHADOWMAP_ACCEPT(shadowMap), vec3 shadowParams) {
float z = dShadowCoord.z;
vec2 uv = dShadowCoord.xy * shadowParams.x;
float shadowMapSizeInv = 1.0 / shadowParams.x;
vec2 base_uv = floor(uv + 0.5);
float s = (uv.x + 0.5 - base_uv.x);
float t = (uv.y + 0.5 - base_uv.y);
base_uv -= vec2(0.5);
base_uv *= shadowMapSizeInv;
float uw0 = (4.0 - 3.0 * s);
float uw1 = 7.0;
float uw2 = (1.0 + 3.0 * s);
float u0 = (3.0 - 2.0 * s) / uw0 - 2.0;
float u1 = (3.0 + s) / uw1;
float u2 = s / uw2 + 2.0;
float vw0 = (4.0 - 3.0 * t);
float vw1 = 7.0;
float vw2 = (1.0 + 3.0 * t);
float v0 = (3.0 - 2.0 * t) / vw0 - 2.0;
float v1 = (3.0 + t) / vw1;
float v2 = t / vw2 + 2.0;
float sum = 0.0;
u0 = u0 * shadowMapSizeInv + base_uv.x;
v0 = v0 * shadowMapSizeInv + base_uv.y;
u1 = u1 * shadowMapSizeInv + base_uv.x;
v1 = v1 * shadowMapSizeInv + base_uv.y;
u2 = u2 * shadowMapSizeInv + base_uv.x;
v2 = v2 * shadowMapSizeInv + base_uv.y;
sum += uw0 * vw0 * textureShadow(shadowMap, vec3(u0, v0, z));
sum += uw1 * vw0 * textureShadow(shadowMap, vec3(u1, v0, z));
sum += uw2 * vw0 * textureShadow(shadowMap, vec3(u2, v0, z));
sum += uw0 * vw1 * textureShadow(shadowMap, vec3(u0, v1, z));
sum += uw1 * vw1 * textureShadow(shadowMap, vec3(u1, v1, z));
sum += uw2 * vw1 * textureShadow(shadowMap, vec3(u2, v1, z));
sum += uw0 * vw2 * textureShadow(shadowMap, vec3(u0, v2, z));
sum += uw1 * vw2 * textureShadow(shadowMap, vec3(u1, v2, z));
sum += uw2 * vw2 * textureShadow(shadowMap, vec3(u2, v2, z));
sum *= 1.0f / 144.0;
sum = saturate(sum);
return sum;
}
float getShadowPCF5x5(SHADOWMAP_ACCEPT(shadowMap), vec3 shadowParams) {
return _getShadowPCF5x5(SHADOWMAP_PASS(shadowMap), shadowParams);
}
float getShadowSpotPCF5x5(SHADOWMAP_ACCEPT(shadowMap), vec4 shadowParams) {
return _getShadowPCF5x5(SHADOWMAP_PASS(shadowMap), shadowParams.xyz);
}
void _getShadowCoordOrtho(mat4 shadowMatrix, vec3 shadowParams, vec3 wPos) {
dShadowCoord = (shadowMatrix * vec4(wPos, 1.0)).xyz;
dShadowCoord.z = saturate(dShadowCoord.z) - 0.0001;
}
void _getShadowCoordPersp(mat4 shadowMatrix, vec4 shadowParams, vec3 wPos) {
vec4 projPos = shadowMatrix * vec4(wPos, 1.0);
projPos.xy /= projPos.w;
dShadowCoord.xy = projPos.xy;
dShadowCoord.z = length(dLightDirW) * shadowParams.w;
}
void getShadowCoordOrtho(mat4 shadowMatrix, vec3 shadowParams) {
_getShadowCoordOrtho(shadowMatrix, shadowParams, vPositionW);
}
void getShadowCoordPersp(mat4 shadowMatrix, vec4 shadowParams) {
_getShadowCoordPersp(shadowMatrix, shadowParams, vPositionW);
}
void getShadowCoordPerspNormalOffset(mat4 shadowMatrix, vec4 shadowParams) {
float distScale = abs(dot(vPositionW - dLightPosW, dLightDirNormW));
vec3 wPos = vPositionW + dVertexNormalW * shadowParams.y * clamp(1.0 - dot(dVertexNormalW, -dLightDirNormW), 0.0, 1.0) * distScale;
_getShadowCoordPersp(shadowMatrix, shadowParams, wPos);
}
void getShadowCoordOrthoNormalOffset(mat4 shadowMatrix, vec3 shadowParams) {
vec3 wPos = vPositionW + dVertexNormalW * shadowParams.y * clamp(1.0 - dot(dVertexNormalW, -dLightDirNormW), 0.0, 1.0);
_getShadowCoordOrtho(shadowMatrix, shadowParams, wPos);
}
void normalOffsetPointShadow(vec4 shadowParams) {
float distScale = length(dLightDirW);
vec3 wPos = vPositionW + dVertexNormalW * shadowParams.y * clamp(1.0 - dot(dVertexNormalW, -dLightDirNormW), 0.0, 1.0) * distScale;
vec3 dir = wPos - dLightPosW;
dLightDirW = dir;
}
void _getShadowCoordPerspZbuffer(mat4 shadowMatrix, vec4 shadowParams, vec3 wPos) {
vec4 projPos = shadowMatrix * vec4(wPos, 1.0);
projPos.xyz /= projPos.w;
dShadowCoord = projPos.xyz;
}
void getShadowCoordPerspZbufferNormalOffset(mat4 shadowMatrix, vec4 shadowParams) {
vec3 wPos = vPositionW + dVertexNormalW * shadowParams.y;
_getShadowCoordPerspZbuffer(shadowMatrix, shadowParams, wPos);
}
void getShadowCoordPerspZbuffer(mat4 shadowMatrix, vec4 shadowParams) {
_getShadowCoordPerspZbuffer(shadowMatrix, shadowParams, vPositionW);
}
float getLightDiffuse() {
return max(dot(dNormalW, -dLightDirNormW), 0.0);
}
mat3 transposeMat3( const in mat3 m ) {
mat3 tmp;
tmp[ 0 ] = vec3( m[ 0 ].x, m[ 1 ].x, m[ 2 ].x );
tmp[ 1 ] = vec3( m[ 0 ].y, m[ 1 ].y, m[ 2 ].y );
tmp[ 2 ] = vec3( m[ 0 ].z, m[ 1 ].z, m[ 2 ].z );
return tmp;
}
vec2 LTC_Uv( const in vec3 N, const in vec3 V, const in float roughness ) {
const float LUT_SIZE = 64.0;
const float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE;
const float LUT_BIAS = 0.5 / LUT_SIZE;
float dotNV = saturate( dot( N, V ) );
vec2 uv = vec2( roughness, sqrt( 1.0 - dotNV ) );
uv = uv * LUT_SCALE + LUT_BIAS;
return uv;
}
float LTC_ClippedSphereFormFactor( const in vec3 f ) {
float l = length( f );
return max( ( l * l + f.z ) / ( l + 1.0 ), 0.0 );
}
vec3 LTC_EdgeVectorFormFactor( const in vec3 v1, const in vec3 v2 ) {
float x = dot( v1, v2 );
float y = abs( x );
float a = 0.8543985 + ( 0.4965155 + 0.0145206 * y ) * y;
float b = 3.4175940 + ( 4.1616724 + y ) * y;
float v = a / b;
float theta_sintheta = ( x > 0.0 ) ? v : 0.5 * inversesqrt( max( 1.0 - x * x, 1e-7 ) ) - v;
return cross( v1, v2 ) * theta_sintheta;
}
struct Coords {
vec3 coord0;
vec3 coord1;
vec3 coord2;
vec3 coord3;
};
float LTC_EvaluateRect( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in Coords rectCoords) {
vec3 v1 = rectCoords.coord1 - rectCoords.coord0;
vec3 v2 = rectCoords.coord3 - rectCoords.coord0;
vec3 lightNormal = cross( v1, v2 );
float factor = sign(-dot( lightNormal, P - rectCoords.coord0 ));
vec3 T1, T2;
T1 = normalize( V - N * dot( V, N ) );
T2 = factor * cross( N, T1 );
mat3 mat = mInv * transposeMat3( mat3( T1, T2, N ) );
vec3 coords[ 4 ];
coords[ 0 ] = mat * ( rectCoords.coord0 - P );
coords[ 1 ] = mat * ( rectCoords.coord1 - P );
coords[ 2 ] = mat * ( rectCoords.coord2 - P );
coords[ 3 ] = mat * ( rectCoords.coord3 - P );
coords[ 0 ] = normalize( coords[ 0 ] );
coords[ 1 ] = normalize( coords[ 1 ] );
coords[ 2 ] = normalize( coords[ 2 ] );
coords[ 3 ] = normalize( coords[ 3 ] );
vec3 vectorFormFactor = vec3( 0.0 );
vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] );
vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] );
vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] );
vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] );
float result = LTC_ClippedSphereFormFactor( vectorFormFactor );
return result;
}
Coords dLTCCoords;
Coords getLTCLightCoords(vec3 lightPos, vec3 halfWidth, vec3 halfHeight) {
Coords coords;
coords.coord0 = lightPos + halfWidth - halfHeight;
coords.coord1 = lightPos - halfWidth - halfHeight;
coords.coord2 = lightPos - halfWidth + halfHeight;
coords.coord3 = lightPos + halfWidth + halfHeight;
return coords;
}
float dSphereRadius;
Coords getSphereLightCoords(vec3 lightPos, vec3 halfWidth, vec3 halfHeight) {
dSphereRadius = max(length(halfWidth), length(halfHeight));
vec3 f = reflect(normalize(lightPos - view_position), vNormalW);
vec3 w = normalize(cross(f, halfHeight));
vec3 h = normalize(cross(f, w));
return getLTCLightCoords(lightPos, w * dSphereRadius, h * dSphereRadius);
}
vec2 dLTCUV;
vec2 getLTCLightUV(float tGlossiness, vec3 tNormalW) {
float roughness = max((1.0 - tGlossiness) * (1.0 - tGlossiness), 0.001);
return LTC_Uv( tNormalW, dViewDirW, roughness );
}
vec3 dLTCSpecFres;
vec3 getLTCLightSpecFres(vec2 uv, vec3 tSpecularity) {
vec4 t2 = texture2DLodEXT(areaLightsLutTex2, uv, 0.0);
return tSpecularity * t2.x + ( vec3( 1.0 ) - tSpecularity) * t2.y;
}
void calcLTCLightValues() {
dLTCUV = getLTCLightUV(dGlossiness, dNormalW);
dLTCSpecFres = getLTCLightSpecFres(dLTCUV, dSpecularity);
}
void calcRectLightValues(vec3 lightPos, vec3 halfWidth, vec3 halfHeight) {
dLTCCoords = getLTCLightCoords(lightPos, halfWidth, halfHeight);
}
void calcDiskLightValues(vec3 lightPos, vec3 halfWidth, vec3 halfHeight) {
calcRectLightValues(lightPos, halfWidth, halfHeight);
}
void calcSphereLightValues(vec3 lightPos, vec3 halfWidth, vec3 halfHeight) {
dLTCCoords = getSphereLightCoords(lightPos, halfWidth, halfHeight);
}
vec3 SolveCubic(vec4 Coefficient) {
float pi = 3.14159;
Coefficient.xyz /= Coefficient.w;
Coefficient.yz /= 3.0;
float A = Coefficient.w;
float B = Coefficient.z;
float C = Coefficient.y;
float D = Coefficient.x;
vec3 Delta = vec3(
-Coefficient.z * Coefficient.z + Coefficient.y, -Coefficient.y * Coefficient.z + Coefficient.x, dot(vec2(Coefficient.z, -Coefficient.y), Coefficient.xy)
);