-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathContinuousFeedbackExtension.py
412 lines (375 loc) · 24.9 KB
/
ContinuousFeedbackExtension.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
import numpy as np
import random
from AppTools.StateMonitors import addstatemonitor
from AppTools.Boxes import box
#TODO: Check if using ogre
import sys
if "ogre.renderer.OGRE" in sys.modules:
from BCPyOgreRenderer.OgreRenderer import HandStimulus, Disc, Block, Text
else:
from AppTools.Shapes import PolygonTexture, Disc, Block
import WavTools
class FeedbackApp(object):
params = [
#"Tab:SubSection DataType Name= Value DefaultValue LowRange HighRange // Comment (identifier)",
#See further details http://bci2000.org/wiki/index.php/Technical_Reference:Parameter_Definition
"Feedback:Design int ContFeedbackEnable= 0 0 0 1 // Enable. Choose feedback below.: 0 no, 1 yes (boolean)",
"Feedback:Design list FeedbackChannels= 1 1 % % % // Channel(s) for feedback",
#Sometimes we want to save some data (via ERPExtension) that is not fed back,
#so the signal processing module will pass in more data than we need for feedback. Thus we need to select FeedbackChannels.
"Feedback:Design int BaselineFeedback= 0 % % % // Should feedback be provided outside task? (boolean)",
"Feedback:Design int BaselineConstant= 0 % % % // Should non-task feedback be constant? (boolean)",
"Feedback:Design int FakeFeedback= 0 % % % // Make feedback contingent on an external file (boolean)",
"Feedback:Design string FakeFile= % % % % // Path to fake feedback csv file (inputfile)",
"Feedback:Visual int VisualFeedback= 0 0 0 1 // Show online feedback? (boolean)",
"Feedback:Visual intlist VisualType= 1 0 0 0 2 // Feedback type: 0 bar, 1 cursor, 2 color_change, 3 none",
"Feedback:Visual intlist ShowTargets= 1 1 0 0 2 // Show visual target: 0 no, 1 yes",
"Feedback:Audio int AudioFeedback= 0 0 0 1 // Play continuous sounds? (boolean)",
"Feedback:Audio matrix AudioWavs= 2 1 300hz.wav 900hz.wav % % % // feedback wavs",
"Feedback:Handbox int HandboxFeedback= 0 0 0 1 // Move handbox? (boolean)",
"Feedback:Handbox string HandboxPort= COM7 % % % // Serial port for controlling Handbox",
"Feedback:NMES int NMESFeedback= 0 % 0 1 // Enable neuromuscular stim feedback? (boolean)",
"Feedback:NMES floatlist NMESRange= {Mid Max} 7 15 0 0 % //Midpoint and Max stim intensities",
"Feedback:NMES string NMESPort= COM10 % % % // Serial port for controlling NMES",
]
states = [
#Name Length(nBits up to 32) Value ByteLocation(in state vector) BitLocation(0 to 7) CRLF
#http://bci2000.org/wiki/index.php/Technical_Reference:State_Definition
#Typically, state values change once per block or once per trial.
#State values are saved per block.
#"SpecificState 1 0 0 0", #Define states that are specific to this extension.
"FBValue 16 0 0 0", #in blocks, 16-bit is max 65536
"FBBlock 16 0 0 0", #Number of blocks that feedback has been on. Necessary for fake feedback.
"Feedback 1 0 0 0", #Whether or not stimuli are currently presented.
"InRange 1 0 0 0", #1 for InRange, 0 for Outrange. This is not a phase state, but actually reflects the signal.
]
@classmethod
def preflight(cls, app, sigprops):
if int(app.params['ContFeedbackEnable'])==1:
# Check FeedbackChannels
chn = app.inchannels()
fch = app.params['FeedbackChannels'].val
if len(fch)==0: raise EndUserError, "Must supply FeedbackChannel"
if False in [isinstance(x, int) for x in fch]:
nf = filter(lambda x: not str(x) in chn, fch)
if len(nf): raise EndUserError, "FeedbackChannel %s not in module's list of input channel names" % str(nf)
app.fbchan = [chn.index(str(x)) for x in fch]
else:
nf = [x for x in fch if x < 1 or x > len(chn) or x != round(x)]
if len(nf): raise EndUserError, "Illegal FeedbackChannel: %s" % str(nf)
app.fbchan = [x-1 for x in fch]
app.fbchan = app.fbchan if len(app.fbchan) == app.nclasses else [app.fbchan[0] for x in range(app.nclasses)]
app.vfb_type = app.params['VisualType'].val if len(app.params['VisualType']) == app.nclasses else [app.params['VisualType'].val[0] for x in range(app.nclasses)]
app.showTargets = app.params['ShowTargets'].val if len(app.params['ShowTargets']) == app.nclasses else [app.params['ShowTargets'].val[0] for x in range(app.nclasses)]
@classmethod
def initialize(cls, app, indim, outdim):
if int(app.params['ContFeedbackEnable'])==1:
if int(app.params['ShowSignalTime']):
app.addstatemonitor('FBValue')
app.addstatemonitor('FBBlock')
app.addstatemonitor('Feedback')
app.addstatemonitor('InRange')
#===================================================================
# Load fake data if we will be using fake feedback.
#===================================================================
if int(app.params['FakeFeedback']):
import csv
fp=app.params['FakeFile']
app.fake_data = np.genfromtxt(fp, delimiter=',')
np.random.shuffle(app.fake_data)
#===================================================================
# We need to know how many blocks per feedback period
# so (non-bar) feedback can be scaled appropriately.
#===================================================================
fbdur = app.params['TaskDur'].val #feedback duration
fbblks = fbdur * app.eegfs / app.spb #feedback blocks
#===================================================================
# Visual Feedback
#===================================================================
if app.params['VisualFeedback'].val:
#===================================================================
# Set a coordinate frame for the screen.
#===================================================================
scrsiz = min(app.scrw,app.scrh)
siz = (scrsiz, scrsiz)
b = box(size=siz, position=(app.scrw/2.0,app.scrh/2.0), sticky=True)
#b is now our perfect box taking up as much of our screen as we are going to use.
#its center is the center pixel, its width and height are equal to the smallest of screen width and height
center = b.map((0.5,0.5), 'position') #what is the center pixel value? e.g.([400.0, 225.0])
#===================================================================
# TODO: Get the arrows working for more than 2 targets
#===================================================================
#===============================================================
# b.scale(x=0.25,y=0.4)#How big should the arrow be, relative to the screen size
# arrow = PolygonTexture(frame=b, vertices=((0.22,0.35),(0,0.35),(0.5,0),(1,0.35),(0.78,0.35),(0.78,0.75),(0.22,0.75),),\
# color=(1,1,1), on=False, position=center)
# app.stimulus('arrow', z=4.5, stim=arrow)#Register the arrow stimulus.
#
# b.scale(x=4.0, y=2.5)#Reset the box
# b.anchor='center'#Reset the box
#===============================================================
#===============================================================
# Target rectangles.
#===============================================================
targtw = 0.5
for x in range(app.nclasses):
my_target = app.target_range[x]
targ_h = int((my_target[1] - my_target[0]) * scrsiz / 200.0)
targ_y = int(center[1] + (my_target[0] + my_target[1]) * scrsiz / 400.0)
targ_stim = Block(position = [center[0], targ_y], size = [targtw * scrsiz, targ_h], color=(1, 0.1, 0.1, 0.5), on=False)
app.stimulus('target_'+str(x), z=2, stim=targ_stim)
#Our feedback will range from -10 to +10
app.m=app.scrh/20.0#Conversion factor from signal amplitude to pixels.
app.b_offset=app.scrh/2.0 #Input 0.0 should be at this pixel value.
#===============================================================
# Add feedback elements
#===============================================================
app.vfb_keys = []
for j in range(app.nclasses):
if app.vfb_type[j]==0: #Bar
app.addbar(color=(0,0.9,0), pos=(app.scrw/2.0,app.b_offset), thickness=app.scrw/10, fac=app.m)
app.vfb_keys.append('barrect_' + str(len(app.bars)))
app.stimuli['bartext_'+ str(len(app.bars))].position=(50,50)#off in the lower corner
#app.stimuli['bartext_'+ str(len(app.bars))].color=[0,0,0]#hide it
app.stimuli['bartext_'+ str(len(app.bars))].on = False#hide it
elif app.vfb_type[j]==1: #Cursor
app.stimulus('cursor_'+str(j), z=3, stim=Disc(position=(app.scrw/2.0,app.b_offset), radius=10, color=(0.9,0.9,0.9), on=False))
app.vfb_keys.append('cursor_'+str(j))
#Set cursor speed so that it takes entire feedback duration to go from bottom to top at amplitude 1 (= 1xvar; =10% ERD; =10%MVC)
app.curs_speed = scrsiz / fbblks #pixels per block
elif app.vfb_type[j]==2: #Color-change circle.
app.col_zero = (0, 1, 0)#Green in the middle.
app.stimulus('col_circle_'+str(j), z=3, stim=Disc(position=center, radius=100, color=app.col_zero, on=False))
app.col_speed = 1.0*(2.0 / fbblks) #Colors will be mapped from -1 to +1. #Trying to double the speed to see if that helps.
app.vfb_keys.append('col_circle_'+str(j))
elif app.vfb_type[j]==3: #None
app.stimulus('cursor_'+str(j), z=-10, stim=Disc(radius=0, color=(0,0,0,0), on=False))
app.vfb_keys.append('cursor_'+str(j))
#===================================================================
# Audio Feedback
#===================================================================
if app.params['AudioFeedback'].val:
# load, and silently start, the sounds
# They will be used for cues and for feedback.
app.sounds = []
wavmat = app.params['AudioWavs']
for i in range(len(wavmat)):
wavlist = wavmat[i]
if len(wavlist) != 1: raise EndUserError, 'FeedbackWavs matrix should have 1 column'
try: snd = WavTools.player(wavlist[0])
except IOError: raise EndUserError, 'failed to load "%s"'%wavlist[0]
app.sounds.append(snd)
snd.vol = 0
snd.play(-1)
#Set the speed at which the fader can travel from -1 (sounds[0]) to +1 (sounds[1])
app.fader_speed = 2 / fbblks
#===================================================================
# Handbox Feedback
#===================================================================
if app.params['HandboxFeedback'].val:
from Handbox.HandboxInterface import Handbox
serPort=app.params['HandboxPort'].val
app.handbox=Handbox(port=serPort)
#When x is +1, we have ERD relative to baseline
#It should take fbblks at x=+1 to travel from 90 to 0
app.hand_speed = -90 / fbblks #hand speed in degrees per block when x=+1
#===================================================================
# Neuromuscular Electrical Stimulation Feedback
#===================================================================
if app.params['NMESFeedback'].val:
stimrange=np.asarray(app.params['NMESRange'].val,dtype='float64')#midpoint and max
stim_min = 2*stimrange[0] - stimrange[1]
from Handbox.NMESInterface import NMES
serPort=app.params['NMESPort'].val
app.nmes=NMES(port=serPort)
app.nmes.width = 1.0
#from Caio.NMES import NMESFIFO
##from Caio.NMES import NMESRING
#app.nmes = NMESFIFO()
##app.nmes = NMESRING()
#app.nmes.running = True
#It should take fbblks at x=+1 to get intensity from min to max
app.nmes_baseline = stimrange[0]
app.nmes_max = stimrange[1]
app.nmes_i = app.nmes.intensity
app.nmes_speed = (stimrange[1]-stim_min) / float(fbblks) #nmes intensity rate of change per block when x=+1
#app.nmes_baseline = stimrange[0]
#app.nmes_max = stimrange[1]
#for i in np.arange(0.1,2*app.nmes_baseline-app.nmes_max,0.1):
# app.nmes.amplitude = i
# time.sleep(0.1)
#app.nmes_speed = float(2) * (app.nmes_max - app.nmes_baseline) / float(fbblks)
@classmethod
def halt(cls,app):
if int(app.params['ContFeedbackEnable'])==1:
#TODO: Delete app.nmes, app.handbox, remove the meters.
pass
@classmethod
def startrun(cls,app):
if int(app.params['ContFeedbackEnable'])==1:
if 1 in app.vfb_type:
for j in range(app.nclasses):
if app.vfb_type[j]==1:
app.stimuli['cursor_'+str(j)].position = app.positions['origin'].A.ravel().tolist()
if int(app.params['NMESFeedback']):
app.nmes_i = 0
app.nmes.intensity = 0
@classmethod
def stoprun(cls,app):
if int(app.params['ContFeedbackEnable'])==1:
if app.params['AudioFeedback'].val:
for snd in app.sounds: snd.vol = 0.0
if int(app.params['NMESFeedback']):
app.nmes.stop()
@classmethod
def transition(cls,app,phase):
if app.params['ContFeedbackEnable'].val:
#What target are we on?
#TargetClass and LastTargetClass are updated to the current target on GoCue transition.
#LastTargetClass will maintain the value of the most recent TargetClass even in Baseline.
t = app.states['LastTargetClass']
app.states['Feedback'] = phase=='task' or app.params['BaselineFeedback'].val#Will we provide feedback this phase?
#===================================================================
# For every transition, we will manage the on/off state of our feedback elements.
#===================================================================
# Visual feedback elements (bars, cursors, etc)
if app.params['VisualFeedback'].val:
for j in range(app.nclasses):
app.stimuli[app.vfb_keys[j]].on = app.states['Feedback'] and j==t-1
# Non-visual feedback should be turned off when states['Feedback'] is off.
if not app.states['Feedback']:
if app.params['AudioFeedback'].val:
for snd in app.sounds: snd.vol=0.0
if int(app.params['NMESFeedback']):
app.nmes.intensity = 0
if int(app.params['HandboxFeedback']):
app.handbox.position = 45
#===================================================================
# Transition specific management
#===================================================================
if phase == 'intertrial':
app.states['FBBlock']=0 #Reset how many blocks we've been giving feedback for this trial.
elif phase == 'baseline':
pass #Feedback elements don't change in transition to baseline.
elif phase == 'gocue': #We have our new target code.
if app.params['VisualFeedback'].val: #Visual _targets_
for j in range(app.nclasses):
app.stimuli['target_'+str(j)].on = j==t-1 and app.showTargets[j]#Update which targets are on
if app.vfb_type[t-1] == 2:#Colored circles.
is_rest = app.params['GoCueText'][t-1].lower() == "rest".lower()
app.screen.color = [0,0.5,1] if is_rest else [1,0.5,0]#Target is blue for rest or orange for anything else.
# else:
# app.screen.color = [0,0,0]#Shouldn't be necessary because we go black during stopcue
#===========================================================
# app.stimuli['arrow'].color = map(lambda x:int(x==t), [2,1,3])
# app.stimuli['arrow'].angle = 180*(2 - t)
#===========================================================
#Individual feedback elements are checked on every phase transition (above)
if app.params['AudioFeedback'].val:
for j in range(app.nclasses): app.sounds[j].vol = float(j==t-1)
elif phase == 'task':
pass
elif phase == 'response':
#Keep the target on if it was already on and feedback is provided outside of task.
#Else turn it off
for j in range(app.nclasses):
app.stimuli['target_'+str(j)].on = app.stimuli['target_'+str(j)].on and app.states['Feedback']
elif phase == 'stopcue':
app.screen.color = [0,0,0]
@classmethod
def process(cls,app,sig):
if int(app.params['ContFeedbackEnable'])==1 and app.states['Feedback']:
t = app.states['LastTargetClass'] #Use LastTargetClass because this does not become 0 between trials.
if app.params['FakeFeedback'].val:
trial_i = app.states['CurrentTrial']-1 if app.states['CurrentTrial'] < app.fake_data.shape[0] else random.uniform(0,app.params['TrialsPerBlock'])
fake_block_ix = np.min((app.fake_data.shape[1],app.states['FBBlock']))
x = app.fake_data[trial_i,fake_block_ix]
else:
#===============================================================
# Inputs from standard modules will have mean 0, variance 1, and extremes of ~ -10 to +10
# My ERD input will have mean 0, and extremes of -10 (=-100%) and + ~20 (=+200% baseline). May be inverted (-20 to +10)
# My EMG input will have a non-zero mean, a min of 0 and a max of 10 (=100% MVC)
#===============================================================
x = sig[app.fbchan,:].mean(axis=1)#Extract the feedback channels.
x = x.A.ravel()[t-1]/3#Transform x to a measure mostly ranging from -3.26 to +3.26 SDs->Necessary for 16-bit integer state
#Save x to a state of uint16
x = min(x, 3.26)
x = max(x, -3.26)
temp_x = x * 10000
app.states['FBValue'] = np.uint16(temp_x) #0-32767 for positive, 65536-32768 for negative
app.states['FBBlock'] = app.states['FBBlock'] + 1
#Pull x back from the state into the range -10,10. This is useful in case enslave states is used.
x = np.int16(app.states['FBValue']) * 3.0 / 10000.0
rangeVal = x #Set a default rangeVal in case the feedback elements don't specify it.
#===============================================================
# VISUAL FEEDBACK (bars, cursors, color-changing circles)
#===============================================================
if app.params['VisualFeedback'].val:
this_fb = app.stimuli[app.vfb_keys[t-1]]
if app.vfb_type[t-1]==0:#bar
update_by = 0.0 if not app.in_phase('task') and app.params['BaselineConstant'] else x
mybar = app.bars[int(app.vfb_keys[t-1][-1])-1]
mybar.set(update_by) #e.g. "barrect_1" take the "1"
rangeVal = mybar.val*10
#app.states['InRange'] = (10*x >= app.target_range[t-1][0]) and (10*x <= app.target_range[t-1][1])
elif app.vfb_type[t-1] == 1: #cursor
if not app.in_phase('task') and app.params['BaselineConstant']:
this_fb.position = app.positions['origin'].A.ravel().tolist()
else:
next_pos = this_fb.y + app.curs_speed * x#speed is pixels per block
next_pos = min(next_pos, app.scrh) #Never move the position off the top
next_pos = max(next_pos, 0) #Never move the position off the bottom
this_fb.y = next_pos
rangeVal = this_fb.position
elif app.vfb_type[t-1] == 2: #color-changing circle.
fake_y = this_fb.color[0] - this_fb.color[2]#convert old color to a position on -1 to +1 scale.
fake_y = fake_y + app.col_speed * x#increment the position
fake_y = max(-1, fake_y)
fake_y = min(1, fake_y)
rangeVal = 100*fake_y
new_r = fake_y if fake_y >= 0 else 0
new_g = 1-0.5*abs(fake_y)
new_b = -1*fake_y if fake_y<=0 else 0
new_color = app.col_zero if not app.in_phase('task')\
and app.params['BaselineConstant'] else [new_r, new_g, new_b]#convert the position to color
#if app.states['FBBlock']>150: app.dbstop()
this_fb.color = new_color
#===============================================================
# AUDIO FEEDBACK (currently broken)
#===============================================================
if app.params['AudioFeedback'].val and not app.in_phase('gocue'):
#app.fader_val from -1 to +1
#can increment or decrement at app.fader_speed
app.fader_val = app.fader_val + app.fader_speed * x
app.fader_val = min(1, app.fader_val)
app.fader_val = max(-1, app.fader_val)
if not app.in_phase('task') and app.params['BaselineConstant']: app.fader_val = 0
app.sounds[0].vol = 0.5 * (1 - app.fader_val)
app.sounds[1].vol = 0.5 * (1 + app.fader_val)
#===============================================================
# HANDBOX FEEDBACK (mechanical device for wrist extension)
#===============================================================
if app.params['HandboxFeedback'].val:
angle = app.handbox.position
angle = angle + app.hand_speed * x
if not app.in_phase('task') and app.params['BaselineConstant']: angle = 45
app.handbox.position = angle
#===============================================================
# NeuroMuscular Electrical Stimulation FEEDBACK
#===============================================================
if app.params['NMESFeedback'].val:
app.nmes_i = app.nmes_i + app.nmes_speed * x
app.nmes_i = min(app.nmes_i, app.nmes_max)
app.nmes_i = max(app.nmes_i, 2*app.nmes_baseline - app.nmes_max, 0)
if not app.in_phase('task') and app.params['BaselineConstant']:
if abs(app.nmes_i-app.nmes_baseline)<1: app.nmes_i = app.nmes_baseline
elif app.nmes_i > app.nmes_baseline: app.nmes_i = app.nmes_i - app.nmes_speed
elif app.nmes_i < app.nmes_baseline: app.nmes_i = app.nmes_i + app.nmes_speed
elif not (app.nmes.intensity==int(app.nmes_i)): app.nmes.intensity = int(app.nmes_i)
#Determine if the feedback is in the desired range.
InRange = rangeVal >= app.target_range[t-1][0] and rangeVal <= app.target_range[t-1][1]
app.states['InRange'] = InRange
app.stimuli['target_'+str(t-1)].color = [1-InRange, InRange, 0] # Modify the color of the visual targets if we are in range.
@classmethod
def event(cls, app, phasename, event):
if int(app.params['ContFeedbackEnable'])==1: pass