forked from Kungbib/openapc-se
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstatistics.Rmd
577 lines (432 loc) · 19.7 KB
/
statistics.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
---
output:
md_document: default
---
```{r, echo = FALSE, warning = TRUE}
# knitr::opts_knit$set(base.url = "/")
knitr::opts_chunk$set(
comment = "#>",
collapse = TRUE,
warning = FALSE,
message = FALSE,
echo = FALSE
)
options(scipen = 999, digits = 0)
knitr::knit_hooks$set(inline = function(x) {
prettyNum(x, big.mark = " ")
}
)
```
```{r preparing data}
# ToDo:
# bold marking of delivering insts in first table
# Order vectors w univs and publishers alphabetically
# write datasets to files, for example offset
# addera år för offset-redovisning
# NB: This code block has to be run first to create the basic datasets needed by code further down
# Note the extra libraries needed
library(tidyverse)
library(kableExtra)
library(ggplot2)
library(ggthemes)
library(RColorBrewer)
# Create the basic full dataset, combined with organisation names
apc_se <- read_csv("data/apc_se.csv")
# Combine with acronym-name-map to get full organisation names
code_name <- read_tsv("data/org_acronym_name_map.tsv")
# Join datasets on institution and acronym
apc_se <- left_join(x = apc_se, y = code_name, by = c("institution" = "acronym"))
# Create subsets
# Create a gold OA subset
apc_se_gold <- filter(apc_se, is_hybrid == FALSE)
# Create a OA hybrid subset
apc_se_hybrid <- filter(apc_se, is_hybrid == TRUE)
# Create a offset subset
apc_se_offset <- read_tsv("data/springer/Springer_Compact_2016_2018.tsv")
apc_se_offset <- left_join(x = apc_se_offset, y = code_name, by = c("institution" = "acronym"))
#Create a non-offset subset
apc_se_not_offset <- read_tsv("data/apc_se_without_springer.tsv")
apc_se_not_offset <- left_join(x = apc_se_not_offset, y = code_name, by = c("institution" = "acronym"))
#Create a non-offset hybrid subset (gold subset not part of offset deals)
apc_se_hybrid_not_offset <- filter(apc_se_not_offset, is_hybrid == TRUE)
#Create vectors for orgs & publishers actively delivering data
deliv_orgs <- c("du", "gih", "gu", "hb", "his", "hv", "kau", "kth", "liu", "lnu", "ltu", "mah", "oru", "sh", "slu", "su", "uu")
deliv_publishers <- c("Springer Compact", "Taylor & Francis", "Karger", "IOP Publishing", "Copernicus")
offset_deals <- c("Springer")
```
# Open APC Sweden - Statistics
This is an example of statistics from the pilot project Open APC Sweden, aiming at gathering data about article processing charges (APC"s) paid by Swedish universities. The statistics cover journal articles published mainly between 2014 and **`r max(apc_se$period)`** from **`r length(deliv_orgs)`** contributors. Please see the [project wiki](https://github.com/Kungbib/openapc-se/wiki) for more information about the project and instructions on how to contribute.
## Contributing organisations and publishers
These Swedish HEIs have reported APC costs for their articles so far:
```{r delivering orgs}
#hämta upp dessa med deliv_orgs
current_deliv_orgs <- filter(code_name, acronym %in% deliv_orgs)
knitr::kable(current_deliv_orgs$organisation, col.names = "Delivering HEIs")
```
A number of publishers have also supplied Open APC Sweden with data:
```{r echo=FALSE, cache = FALSE}
knitr::kable(deliv_publishers, col.names = "Publishers")
```
This publisher-supplied data leads to publishing costs being reported for a number of Swedish research institutions which not yet have supplied us with data actively.
## Dataset
Information on both open access journal articles, open access publication of articles in toll-access journals ("hybrid") and articles published within current Swedish offset deals are provided. You may view the dataset at the [project page in GitHub](https://github.com/Kungbib/openapc-se/blob/master/data/apc_se.csv).
## Open Access Articles (Total: "gold", "hybrid" and "offset")
At the moment, the dataset contains the following information:
* Number of articles: **`r nrow(apc_se)`**
* Total expenditure: **`r format(sum(apc_se$euro), scientific=FALSE)` €**
Articles and APC costs per institution (note that both delivering and non-delivering institutions are included):
```{r, apc summary per orgs}
apc_summary <- apc_se %>%
group_by(organisation) %>%
summarise(
Articles= n(),
Fees = sum(euro)
)
names(apc_summary) <- c("Organisation", "Articles", "Fees paid (€)")
#how to make bold delivering rows?
knitr::kable(apc_summary, digits = 0, format.args = list(big.mark = " "))
```
## Articles in Open Access journals ("gold OA"), offset articles excluded
At the moment, the dataset contains the following information on articles in open access journals:
* Number of articles: **`r nrow(apc_se_gold)`**
* Total expenditure: **`r format(sum(apc_se_gold$euro), scientific=FALSE)` €**
* Average fee: **`r format(sum(apc_se_gold$euro)/nrow(apc_se_gold), digits = 4)` €**
* Median fee: **`r median(apc_se_gold$euro)` €**
* Share of articles with no fees: **`r format(100 * sum(apc_se_gold$euro == 0)/nrow(apc_se_gold), digits = 2)` %**
Gold OA and APC costs per institution (note that both delivering and non-delivering institutions are included):
```{r, open access journals articles}
apc_summary_gold <- apc_se_gold %>%
group_by(organisation) %>%
summarise(
Articles= n(),
Fees = sum(euro),
Mean = mean(euro),
Median = median(euro),
Share_no_fees = 100*mean(euro == 0)
)
names(apc_summary_gold) <- c("Organisation", "Articles", "Fees paid (€)", "Mean APC (€)",
"Median APC (€)", "Share of articles w/o fee (%)")
knitr::kable(apc_summary_gold, digits = 0, format.args = list(big.mark = " "))
```
The following diagram shows the most used open access journals for publishing gold articles.
```{r gold most used journals}
#find top10 gold journals
top10publ_gold <- apc_se_gold %>%
count(journal_full_title, publisher) %>%
top_n(10) %>%
arrange(desc(n))
names(top10publ_gold) <- c("Journal title", "Publisher", "Nr of articles")
knitr::kable(top10publ_gold, digits = 0, format.args = list(big.mark = " "))
```
## OA articles in subscription journals ("hybrid OA"), offset articles excluded
In many subscription journals some of the articles are open access after a fee has been paid. This model is called "hybrid open access".
The dataset covers the following data on hybrid open access articles:
* Number of articles: **`r nrow(apc_se_hybrid_not_offset)`**
* Total expenditure: **`r format(sum(apc_se_hybrid_not_offset$euro), scientific=FALSE)` €**
* Average fee: **`r format(mean(apc_se_hybrid_not_offset$euro), digits = 4)` €**
* Median fee: **`r median(apc_se_hybrid_not_offset$euro)` €**
* Share of articles with no fees: **`r format(100 * sum(apc_se_hybrid_not_offset$euro == 0)/nrow(apc_se_hybrid_not_offset), digits = 2)` %**
Hybrid OA and APC costs per institution (note that both delivering and non-delivering institutions are included):
```{r, hybrid articles}
apc_summary_hybrid_not_offset <- apc_se_hybrid_not_offset %>%
group_by(organisation) %>%
summarise(Articles= n(),
Fees = sum(euro),
Mean = mean(euro),
Median = median(euro),
Share_no_fees = 100*mean(euro == 0)
)
names(apc_summary_hybrid_not_offset) <- c("Organisation", "Articles", "Fees paid (€)", "Mean APC (€)",
"Median APC (€)", "Share of articles w/o fee (%)")
knitr::kable(apc_summary_hybrid_not_offset, digits = 0, format.args = list(big.mark = " "))
```
The following diagram shows the most used subscription journals for publishing hybrids.
```{r, hybrid most used journals}
#find top10 hybrid journals
top10publ_hybrid <- apc_se_hybrid_not_offset %>%
count(journal_full_title, publisher) %>%
top_n(10) %>%
arrange(desc(n))
names(top10publ_hybrid) <- c("Journal title", "Publisher", "Nr of articles")
knitr::kable(top10publ_hybrid, digits = 0, format.args = list(big.mark = " "))
```
## OA articles in offset deals
In offset deals a total number of articles is agreed upon, together with a license fee.
The dataset covers the following data on offset deal articles:
* Publishers with current offset deals: **`r offset_deals`**
* Number of articles: **`r nrow(apc_se_offset)`**
The following institutions have contributed to offset deals.
```{r, offset articles}
apc_summary_se_offset <- apc_se_offset %>%
group_by(organisation) %>%
summarise(
Articles= n()
)
names(apc_summary_se_offset) <- c("Organisation", "Articles")
knitr::kable(apc_summary_se_offset, digits = 0, format.args = list(big.mark = " "))
```
The following diagram shows the most used journals within the offset deals.
```{r, offset most used journals}
#find top10 offset journals
top10publ_offset <- apc_se_offset %>%
count(journal_full_title, publisher) %>%
top_n(10) %>%
arrange(desc(n))
names(top10publ_offset) <- c("Journal title", "Publisher", "Nr of articles")
knitr::kable(top10publ_offset, digits = 0, format.args = list(big.mark = " "))
```
![](figure/offset_jrnls.png)
## Distribution over publishers (offset deals excluded)
### Both gold and hybrid articles (offset deals excluded)
Note that the offset deals are not included here.
```{r, publisher distribution}
# Choose the 19 most used publishers, and the 20th row makes up the others
apc_summary_publishers <- apc_se_not_offset %>%
group_by(publisher) %>%
summarise(
Fees = sum(euro),
Hybrid = sum(euro[is_hybrid == TRUE]),
Gold = sum(euro[is_hybrid == FALSE])
) %>%
arrange(desc(Fees)) %>%
mutate(publisher_label = ifelse(row_number() <= 19, publisher, "Other publishers")) %>%
gather("Hybrid", "Gold", key = "OA_type", value = "OA_fees") %>%
arrange(desc(Fees))
p <- ggplot(data = apc_summary_publishers) +
geom_bar(mapping = aes(x = reorder(publisher_label, Fees), y = OA_fees, fill = OA_type), stat = "identity") +
labs(y = "Fees paid (€)", x = "") +
scale_y_continuous(breaks = c(0, 500000, 1000000),
label = c("0", "500K", "1000K")) +
scale_fill_manual(values = c("#F7A600", "#808080")) +
coord_flip() +
theme_bw() +
theme(
legend.text = element_text(size = 8, colour = "black"),
legend.position = "bottom",
legend.title = element_blank()
) +
guides(fill = guide_legend(ncol = 2))
ggsave(p, file = "figure/apc_publishers.png", width = 20 ,height = 20, units = "cm")
```
![](figure/apc_publishers.png)
### gold OA journal articles per delivering organisation 2017 (offset deals excluded)
```{r, gold oa per delivering orgs 2017}
apc_gold_2017_deliv_orgs <- apc_se_gold %>%
filter(institution %in% deliv_orgs) %>%
filter(period == 2017)
apc_gold_ranks <- apc_gold_2017_deliv_orgs %>%
group_by(publisher) %>%
summarise(Sum_fee = sum(euro)) %>%
arrange(desc(Sum_fee)) %>%
mutate(publisher_label = ifelse(row_number() <= 9, publisher, "Other publishers"))
apc_gold_table <- left_join(apc_gold_2017_deliv_orgs, apc_gold_ranks, by = "publisher")
apc_gold_diagram <- apc_gold_table %>%
group_by(organisation, publisher_label) %>%
summarise(Sum_fee = sum(euro))
## Plot by deliv orgs/apcs paid 2017
p <- ggplot(data = apc_gold_diagram) +
geom_bar(mapping = aes(x = reorder(organisation, Sum_fee, sum), y = Sum_fee, fill = publisher_label),
#colour = "black",
stat = "identity") +
labs(y = "Fees paid 2017 (€)", x = NULL) +
scale_y_continuous(labels = function(x) format(x, big.mark = " ", scientific = FALSE)) +
coord_flip() +
scale_fill_brewer(palette = "PRGn") +
theme_bw() +
theme(
legend.text = element_text(size = 7, colour = "black"),
legend.position = "bottom",
legend.title = element_blank() #"Paying organisation"
) +
guides(fill = guide_legend(ncol = 4))
ggsave(p, file = "figure/apcs_2017_deliv_orgs_gold_oa.png", width = 20, height = 20, units = "cm")
```
The ten largest publishers of OA journals in terms of paid APCs 2017 per delivering organisation (a subset of the whole dataset).
![](figure/apcs_2017_deliv_orgs_gold_oa.png)
### Hybrid OA articles in toll access journals per delivering organisation 2017 (offset deals excluded)
```{r, hybrid oa per delivering orgs 2017}
apc_hybrid_2017_deliv_orgs <- apc_se_hybrid_not_offset %>%
filter(institution %in% deliv_orgs) %>%
filter(period == 2017)
apc_hybrid_ranks <- apc_hybrid_2017_deliv_orgs %>%
group_by(publisher) %>%
summarise(Sum_fee = sum(euro)) %>%
arrange(desc(Sum_fee)) %>%
mutate(publisher_label = ifelse(row_number() <= 9, publisher, "Other publishers"))
apc_hybrid_table <- left_join(apc_hybrid_2017_deliv_orgs, apc_hybrid_ranks, by = "publisher")
apc_hybrid_diagram <- apc_hybrid_table %>%
group_by(organisation, publisher_label) %>%
summarise(Sum_fee = sum(euro))
## Plot by deliv orgs/apcs paid 2017
p <- ggplot(data = apc_hybrid_diagram) +
geom_bar(mapping = aes(x = reorder(organisation, Sum_fee, sum), y = Sum_fee, fill = publisher_label),
#colour = "black",
stat = "identity") +
labs(y = "Fees paid (€) 2017", x = NULL) +
scale_y_continuous(labels = function(x) format(x, big.mark = " ", scientific = FALSE)) +
coord_flip() +
scale_fill_brewer(palette = "PRGn") +
theme_bw() +
theme(
legend.text = element_text(size = 7, colour = "black"),
legend.position = "bottom",
legend.title = element_blank() #"Paying organisation"
) +
guides(fill = guide_legend(ncol = 4))
ggsave(p, file = "figure/apcs_2017_deliv_orgs_hybrid_oa.png", width = 20, height = 20, units = "cm")
```
APC fees paid per publisher with indication of contribution from each university.
![](figure/apcs_2017_deliv_orgs_hybrid_oa.png)
### Status for delivering organisations
Delivery status for participating organisations by year.
```{r, status deliv orgs}
delivery <- apc_se_not_offset %>%
filter(institution %in% deliv_orgs) %>%
filter(period > 2014)
p <- ggplot(delivery) +
geom_bar(aes(organisation, fill = as.factor(period)), position = "dodge") +
labs(y = "Nr of articles", x = "") +
scale_fill_brewer(palette = "Blues") +
coord_flip() +
theme_bw() +
theme(
legend.text = element_text(size = 7, colour = "black"),
legend.position="bottom",
legend.title = element_blank() #"Paying organisation"
) +
guides(fill = guide_legend(ncol = 4))
ggsave(p, file = "figure/delivery_status.png", width = 20, height = 20, units = "cm")
```
![](figure/delivery_status.png)
## Fees and average APC paid per organisation (only delivering universities, offset deals excluded)
```{r, fees and average apc}
p <- ggplot(data = filter(apc_se_not_offset, institution %in% deliv_orgs), aes(organisation, euro)) +
geom_boxplot() +
geom_point(alpha = 8/10, size = 2, aes(colour = is_hybrid)) +
scale_colour_manual(values = c("#F7A600", "#808080"), labels = c("Gold OA", "Hybrid OA")) +
labs(x = "", y = "APC (€)") +
coord_flip() +
theme_bw() +
theme(
axis.text = element_text(size = 12),
axis.title = element_text(size = 14,face = "bold"),
legend.text = element_text(size = 12, colour = "black"),
legend.position = "bottom",
legend.title = element_blank()
)
ggsave(p, file = "figure/apc_per_deliv_orgs.png", width = 20, height = 20, units = "cm")
```
![](figure/apc_per_deliv_orgs.png)
## Fees and average APC for the top-10 most frequent publishers (offset deals excluded)
```{r, fees and average for to 10 publishers}
#find top10 publishers
top10publ <- apc_se_not_offset %>%
count(publisher) %>%
top_n(10)
selection_publ <- top10publ$publisher
p <- ggplot(data = filter(apc_se_not_offset, publisher %in% selection_publ),
aes(publisher, euro)) +
geom_boxplot() +
geom_point(alpha = 8/10, size = 2, aes(colour = is_hybrid)) +
scale_colour_manual(values = c("#F7A600", "#808080"), labels = c("Gold OA", "Hybrid OA")) +
labs(x = "", y = "APC (€)") +
coord_flip() +
theme_bw() +
theme(
axis.text = element_text(size = 12),
axis.title = element_text(size = 14,face = "bold"),
legend.text = element_text(size = 12, colour = "black"),
legend.position = "bottom",
legend.title = element_blank()
)
ggsave(p, file = "figure/publisher_apcs.png", width = 20, height = 20, units = "cm")
```
![](figure/publisher_apcs.png)
## Average and distribution of APC"s by year, 2014 - (offset deals excluded)
```{r, average and distribution over time}
p <- ggplot(data = filter(apc_se_not_offset, period>2013),
aes(factor(period), euro, colour = is_hybrid)) +
geom_boxplot() +
geom_point(alpha = 2/10, size = 2) +
scale_colour_manual(values = c("#F7A600", "#808080"), labels = c("Gold OA", "Hybrid OA")) +
labs(x = "Year", y = "APC (€)") +
theme_bw() +
theme(
axis.text = element_text(size = 12),
axis.title = element_text(size = 14, face = "bold"),
legend.text = element_text(size = 12, colour = "black"),
legend.position = "bottom",
legend.title = element_blank()
)
ggsave(p, file = "figure/apc_avg_per_year.png", width = 20, height = 20, units = "cm")
```
![](figure/apc_avg_per_year.png)
## Average APC trend by year, 2014 - (offset deals excluded)
```{r, average apc trend}
average_apc_trend <- apc_se_not_offset %>%
select(period, euro, is_hybrid) %>%
filter(period > 2013) %>%
group_by(period, is_hybrid) %>%
summarise(yearly_mean = mean(euro),
n_art = n())
# Common settings for ggplot
p <- ggplot(
data = average_apc_trend,
aes(y = yearly_mean, x = period, colour = is_hybrid, label = round(yearly_mean))
) +
geom_line(
stat = "identity",
size = 1
) +
geom_point(
size = 2,
shape = 21,
fill = "white"
) +
geom_text(
colour = "gray",
hjust = 0,
vjust = 2,
size = 3
) +
scale_colour_manual(
values = c("#F7A600", "#808080"), labels = c("Gold OA", "Hybrid OA")
) +
ggtitle("Yearly trend for average APC (€)") +
labs(x = "Year", y = "€") +
scale_y_continuous(
limits = c(0, 2500),
labels = function(x) format(x, big.mark = " ", scientific = FALSE)
) +
scale_x_continuous(
breaks = seq(2014,2017,1)
) +
theme_bw() +
theme(
legend.position = "bottom",
legend.direction = "horizontal",
legend.title = element_blank(),
legend.text = element_text(size = 10, colour = "black"),
legend.key = element_rect(fill = "white", colour = "white")
) +
theme(
axis.line = element_line(size = 1, colour = "black"),
panel.grid.major = element_line(colour = "#d3d3d3"),
panel.grid.minor = element_blank(),
panel.border = element_blank(),
panel.background = element_blank(),
#plot.title = element_text(size = 14, family = "Tahoma"), # , face = "bold"
#text = element_text(family="Tahoma"),
axis.text.x = element_text(colour = "black", size = 10),
axis.text.y = element_text(colour = "black", size = 10)
)
# Plot the result
ggsave(p, file = "figure/apc_avg_trend.png", width = 20, height = 20, units = "cm")
```
![](figure/apc_avg_trend.png)
## Acknowledgement
This project follows the [Open APC Initiative](https://github.com/OpenAPC/openapc-de) to share data on paid APCs.
It recognises efforts from [JISC](https://www.jisc-collections.ac.uk/Jisc-Monitor/APC-data-collection/) and [FWF](https://figshare.com/articles/Austrian_Science_Fund_FWF_Publication_Cost_Data_2014/1378610) to standardise APC reporting.
## Contact
For general comments, email Beate Eellend at the National Library of Sweden: **beate.eellend [at] kb.se**
For technical issues, email Camilla Lindelöw at the National Library of Sweden: **camilla.lindelow [at] kb.se**