-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathtest_scaling_sla_bfo_nn.py
83 lines (66 loc) · 4.85 KB
/
test_scaling_sla_bfo_nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
from model.scaling.ProactiveSLAScaling import SLABasedOnVms as BrokerScaling
from utils.IOUtil import load_number_of_vms, save_scaling_results_to_csv
from utils.MetricUtil import ADI
import numpy as np
model_names = {"fl_bfonn": "fl_bfonn"}
input_types = {"uni": "uni", "multi": "multi"}
models = [
{"name": model_names["fl_bfonn"],
"sliding": 3,
"input_type": input_types["uni"],
"cpu": "FL_BFONN-sliding_3-ex_func_3-act_func_0-pop_size_70-elim_disp_steps_2-repro_steps_5-chem_steps_80-d_attr_0.1_w_attr_0.2-h_rep_0.1_w_rep_10-step_size_0.05-p_eliminate_0.25-swim_length_4",
"ram": "FL_BFONN-sliding_3-ex_func_2-act_func_0-pop_size_100-elim_disp_steps_1-repro_steps_5-chem_steps_80-d_attr_0.1_w_attr_0.2-h_rep_0.1_w_rep_10-step_size_0.05-p_eliminate_0.25-swim_length_8"},
{"name": model_names["fl_bfonn"],
"sliding": 3,
"input_type": input_types["multi"],
"cpu": "FL_BFONN-sliding_3-ex_func_3-act_func_0-pop_size_100-elim_disp_steps_2-repro_steps_5-chem_steps_60-d_attr_0.1_w_attr_0.2-h_rep_0.1_w_rep_10-step_size_0.05-p_eliminate_0.25-swim_length_8",
"ram": "FL_BFONN-sliding_3-ex_func_3-act_func_0-pop_size_100-elim_disp_steps_1-repro_steps_3-chem_steps_80-d_attr_0.1_w_attr_0.2-h_rep_0.1_w_rep_10-step_size_0.1-p_eliminate_0.25-swim_length_8"},
{"name": model_names["fl_bfonn"],
"sliding": 4,
"input_type": input_types["uni"],
"cpu": "FL_BFONN-sliding_4-ex_func_3-act_func_0-pop_size_100-elim_disp_steps_2-repro_steps_3-chem_steps_60-d_attr_0.1_w_attr_0.2-h_rep_0.1_w_rep_10-step_size_0.1-p_eliminate_0.25-swim_length_8",
"ram": "FL_BFONN-sliding_4-ex_func_2-act_func_0-pop_size_100-elim_disp_steps_2-repro_steps_5-chem_steps_80-d_attr_0.1_w_attr_0.2-h_rep_0.1_w_rep_10-step_size_0.15-p_eliminate_0.25-swim_length_4"},
{"name": model_names["fl_bfonn"],
"sliding": 4,
"input_type": input_types["multi"],
"cpu": "FL_BFONN-sliding_4-ex_func_3-act_func_0-pop_size_100-elim_disp_steps_2-repro_steps_5-chem_steps_60-d_attr_0.1_w_attr_0.2-h_rep_0.1_w_rep_10-step_size_0.05-p_eliminate_0.25-swim_length_8",
"ram": "FL_BFONN-sliding_4-ex_func_3-act_func_0-pop_size_70-elim_disp_steps_1-repro_steps_5-chem_steps_60-d_attr_0.1_w_attr_0.2-h_rep_0.1_w_rep_10-step_size_0.05-p_eliminate_0.25-swim_length_4"},
{"name": model_names["fl_bfonn"],
"sliding": 5,
"input_type": input_types["uni"],
"cpu": "FL_BFONN-sliding_5-ex_func_3-act_func_0-pop_size_100-elim_disp_steps_1-repro_steps_3-chem_steps_80-d_attr_0.1_w_attr_0.2-h_rep_0.1_w_rep_10-step_size_0.05-p_eliminate_0.25-swim_length_4",
"ram": "FL_BFONN-sliding_5-ex_func_3-act_func_0-pop_size_50-elim_disp_steps_2-repro_steps_5-chem_steps_80-d_attr_0.1_w_attr_0.2-h_rep_0.1_w_rep_10-step_size_0.1-p_eliminate_0.25-swim_length_4"},
{"name": model_names["fl_bfonn"],
"sliding": 5,
"input_type": input_types["multi"],
"cpu": "FL_BFONN-sliding_5-ex_func_3-act_func_0-pop_size_100-elim_disp_steps_2-repro_steps_5-chem_steps_60-d_attr_0.1_w_attr_0.2-h_rep_0.1_w_rep_10-step_size_0.05-p_eliminate_0.25-swim_length_8",
"ram": "FL_BFONN-sliding_2-ex_func_3-act_func_0-pop_size_50-elim_disp_steps_2-repro_steps_3-chem_steps_60-d_attr_0.1_w_attr_0.2-h_rep_0.1_w_rep_10-step_size_0.05-p_eliminate_0.25-swim_length_4"},
]
s_coffs = [ 1 + x / 10 for x in range(0, 21)]
L_adaps = [ x for x in range(2, 51)]
resource_real_used = load_number_of_vms('vms_real_used_CPU_RAM.csv')
for model in models:
if model["input_type"] == "multi":
cpu_file = "results/" + model["name"] + "/multi_cpu/" + model["cpu"] + ".csv"
ram_file = "results/" + model["name"] + "/multi_ram/" + model["ram"] + ".csv"
else:
cpu_file = "results/" + model["name"] + "/cpu/" + model["cpu"] + ".csv"
ram_file = "results/" + model["name"] + "/ram/" + model["ram"] + ".csv"
violated_arrays = []
adi_arrays = []
for s_coff in s_coffs:
violated_arr = []
adi_arr = []
for L_adap in L_adaps:
broker = BrokerScaling(scaling_coefficient=s_coff, adaptation_len=L_adap)
neural_net = broker.sla_violate(cpu_file, ram_file)
eval_scaler = ADI(lower_bound=0.6, upper_bound = 0.8, metric='CPU Utilisation %')
adi = sum(np.array(eval_scaler.calculate_ADI(resource_used=resource_real_used, resource_allocated=neural_net[1][-1])))
violated_arr.append(round(neural_net[0], 2))
adi_arr.append(round(adi, 2))
violated_arrays.append(violated_arr)
adi_arrays.append(adi_arr)
violated_path_file = "results/scaling2/sliding_" + str(model["sliding"]) + "/" + model["input_type"] + "/" + model["name"] + "_violated"
adi_path_file = "results/scaling2/sliding_" + str(model["sliding"]) + "/" + model["input_type"] + "/" + model["name"] + "_adi"
save_scaling_results_to_csv(violated_arrays, violated_path_file)
save_scaling_results_to_csv(adi_arrays, adi_path_file)