forked from mathewbarlow/potential-vorticity
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgfs_pv_1.2.py
305 lines (255 loc) · 9.72 KB
/
gfs_pv_1.2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
#
# python code for some calculations related to the dynamic tropopause (DT) -
# DT pressure, DT potential temperature, 330K PV,
# and a cross-section of PV at the latitude where the tropopause is lowest -
# all based on the GFS analysis available online. As the data is accessed
# online, the program can take a while to run.
#
# the date and lat-lon range can be set below
#
# (poorly) coded by Mathew Barlow
# initial release: 14 Nov 2017
# last updated: 30 Nov 2017
#
# this code has *not* been extensively tested and has been
# awkwardly translated from other coding languages, so if you find
# any errors or have any suggestions or improvements, including for
# the plotting, please let me know at [email protected] . Thanks!
#
# Support from NSF AGS-1623912 is gratefully acknowledged
#
import numpy as np
import netCDF4
import matplotlib.pyplot as plt
import matplotlib.ticker as mticker
import cartopy.crs as ccrs
from scipy.ndimage import gaussian_filter
from cartopy.feature import NaturalEarthFeature
from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER
from datetime import datetime
# VALUES TO SET *************************************************
# set date, lat-lon range, and PV-value definition of tropopause
mydate='20171130'
myhour='06'
(lat1,lat2)=(20,60)
(lon1,lon2)=(-140,-50)
tpdef=2 # definition of tropopause in PVU
#****************************************************************
lon1=lon1+360
lon2=lon2+360
#constants
re=6.37e6
g=9.81
cp=1004.5
r=2*cp/7
kap=r/cp
omega=7.292e-5
pi=3.14159265
# open dataset, retreive variables, close dataset
url='http://nomads.ncep.noaa.gov:80/dods/gfs_0p25/gfs'+\
mydate+'/gfs_0p25_'+myhour+'z_anl'
file = netCDF4.Dataset(url)
lat_in = file.variables['lat'][:]
lon_in = file.variables['lon'][:]
lev = file.variables['lev'][:]
pres2pv_in = file.variables['pres2pv'][0,:,:]
t_in = file.variables['tmpprs'][0,:,:,:]
u_in = file.variables['ugrdprs'][0,:,:,:]
v_in = file.variables['vgrdprs'][0,:,:,:]
hgt_in = file.variables['hgtprs'][0,:,:,:]
file.close()
# get array indices for lat-lon range
# specified above
iy1 = np.argmin( np.abs( lat_in - lat1 ) )
iy2 = np.argmin( np.abs( lat_in - lat2 ) )
ix1 = np.argmin( np.abs( lon_in - lon1 ) )
ix2 = np.argmin( np.abs( lon_in - lon2 ) )
# select specified lat-lon range
t=t_in[:,iy1:iy2,ix1:ix2]
lon=lon_in[ix1:ix2]
lat=lat_in[iy1:iy2]
u=u_in[:,iy1:iy2,ix1:ix2]
v=v_in[:,iy1:iy2,ix1:ix2]
hgt=hgt_in[:,iy1:iy2,ix1:ix2]
pres2pv=pres2pv_in[iy1:iy2,ix1:ix2]
# some prep work for derivatives
xlon,ylat=np.meshgrid(lon,lat)
dlony,dlonx=np.gradient(xlon)
dlaty,dlatx=np.gradient(ylat)
dx=re*np.cos(ylat*pi/180)*dlonx*pi/180
dy=re*dlaty*pi/180
# define potential temperature and Coriolis parameter
theta=t*(1.E5/(lev[:,np.newaxis,np.newaxis]*100))**kap
f=2*omega*np.sin(ylat*pi/180)
# calculate derivatives
# (np.gradient can handle 1D uneven spacing,
# so build that in for p, but do dx and dy
# external to the function since they are 2D)
ddp_theta=np.gradient(theta,lev*100,axis=0)
ddx_theta=np.gradient(theta,axis=2)/dx
ddy_theta=np.gradient(theta,axis=1)/dy
ddp_u=np.gradient(u,lev*100,axis=0)
ddp_v=np.gradient(v,lev*100,axis=0)
ddx_v=np.gradient(v,axis=2)/dx
ddy_ucos=np.gradient(u*np.cos(ylat*pi/180),axis=1)/dy
# calculate contributions to PV and PV
absvort=ddx_v-(1/np.cos(ylat*pi/180))*ddy_ucos+f
pv_one=g*absvort*(-ddp_theta)
pv_two=g*(ddp_v*ddx_theta-ddp_u*ddy_theta)
pv=pv_one+pv_two
# calculate pressure of tropopause, Fortran-style (alas!)
# as well as potential temperature (theta) and height
#
# starting from 10hPa and working down, to avoid
# more complicated vertical structure higher up
#
nx=ix2-ix1+1
ny=iy2-iy1+1
nz=lev.size
nzs=np.argwhere(lev==10.0)[0,0]
tp=np.empty((ny-1,nx-1))*np.nan # initialize as undef
tp_theta=np.empty((ny-1,nx-1))*np.nan # initialize as undef
tp_hgt=np.empty((ny-1,nx-1))*np.nan # initialize as undef
for ix in range(0,nx-1):
for iy in range(0,ny-1):
for iz in range(nzs,0,-1):
if pv[iz,iy,ix]/1e-6<=tpdef:
if np.isnan(tp[iy,ix]):
tp[iy,ix]=(
(lev[iz]*(pv[iz+1,iy,ix]-tpdef*1e-6)
-lev[iz+1]*(pv[iz,iy,ix]-tpdef*1e-6))/
(pv[iz+1,iy,ix]-pv[iz,iy,ix])
)
tp_theta[iy,ix]=(
((lev[iz]-tp[iy,ix])*theta[iz+1,iy,ix]+
(tp[iy,ix]-lev[iz+1])*theta[iz,iy,ix])/
(lev[iz]-lev[iz+1])
)
tp_hgt[iy,ix]=(
((lev[iz]-tp[iy,ix])*hgt[iz+1,iy,ix]+
(tp[iy,ix]-lev[iz+1])*hgt[iz,iy,ix])/
(lev[iz]-lev[iz+1])
)
# calculate PV on the 330K isentropic surface
# (also not in a pythonic way)
nx=ix2-ix1+1
ny=iy2-iy1+1
nz=lev.size
pv330=np.empty((ny-1,nx-1))*np.nan # initialize as undef
for ix in range(0,nx-1):
for iy in range(0,ny-1):
for iz in range(nz-2,0,-1):
if theta[iz,iy,ix]>=330:
if theta[iz-1,iy,ix]<=330:
if np.isnan(pv330[iy,ix]):
pv330[iy,ix]=(
((330-theta[iz-1,iy,ix])*pv[iz,iy,ix]+
(theta[iz,iy,ix]-330)*pv[iz-1,iy,ix])/
(theta[iz,iy,ix]-theta[iz-1,iy,ix])
)
# slight smoothing of result
# (appears to work better than smoothing u,v,t first)
tp=gaussian_filter(tp,sigma=1)
tp_theta=gaussian_filter(tp_theta,sigma=1)
pv330=gaussian_filter(pv330,sigma=1)
# define spatial correlation function for testing results
def scorr(a,b):
abar=np.mean(a)
bbar=np.mean(b)
covar=sum((a-abar)*(b-bbar))
avar=sum((a-abar)**2)
bvar=sum((b-bbar)**2)
r=covar/np.sqrt(avar*bvar)
return(r)
# identify latitude of lowest tropopause
maxloc=np.argwhere(tp==np.amax(tp))
latmax=lat[maxloc[0,0]]
# now make some plots - these badly need to be improved
states = NaturalEarthFeature(category='cultural',
scale='50m', facecolor='none',
name='admin_1_states_provinces_shp')
# get date for plotting
fdate=datetime.strptime(mydate, '%Y%m%d').strftime('%d %b %Y')
# plot of DT pressure
plt.figure(1)
ax = plt.axes(projection=ccrs.PlateCarree( ))
ax.set_extent([lon1,lon2,lat1,lat2],crs=ccrs.PlateCarree())
clevs=np.arange(50,800,50)
plt.contour(lon,lat,tp,clevs,transform=ccrs.PlateCarree(),colors='black',
linewidths=0.5)
cp=plt.contourf(lon,lat,tp,clevs,transform=ccrs.PlateCarree(),cmap='RdPu')
gl = ax.gridlines(draw_labels=True)
plt.contour(lon,lat,ylat,[latmax],transform=ccrs.PlateCarree(),colors='white',
linewidths=1,linestyles='dashed')
cbar = plt.colorbar(cp, ticks=clevs, orientation='horizontal')
cbar.set_label('hPa')
ax.add_feature(states, linewidth=0.8, color='gray')
ax.coastlines('50m', linewidth=0.8,color='gray')
gl.xlabels_top = gl.ylabels_right = False
gl.xformatter = LONGITUDE_FORMATTER
gl.yformatter = LATITUDE_FORMATTER
gl.xlocator = mticker.FixedLocator(np.arange(lon1-360,lon2-360+10,10))
gl.ylocator = mticker.FixedLocator(np.arange(lat1,lat2+5,5))
plt.title('Dynamic Tropopause (2PVU) Pressure\n'+myhour+'Z '+fdate)
plt.figure(2)
ax = plt.axes(projection=ccrs.PlateCarree( ))
ax.set_extent([lon1,lon2,lat1,lat2],crs=ccrs.PlateCarree())
clevs2=np.arange(260,400,10)
plt.contour(lon,lat,tp_theta,clevs2,transform=ccrs.PlateCarree(),
colors='black',linewidths=0.5)
cp=plt.contourf(lon,lat,tp_theta,clevs2,transform=ccrs.PlateCarree(),
cmap='RdBu_r')
cbar = plt.colorbar(cp, ticks=clevs2, orientation='horizontal')
cbar.set_label('K')
ax.add_feature(states, linewidth=0.8, color='gray')
ax.coastlines('50m', linewidth=0.8,color='gray')
gl = ax.gridlines(draw_labels=True)
gl.xlabels_top = gl.ylabels_right = False
gl.xformatter = LONGITUDE_FORMATTER
gl.yformatter = LATITUDE_FORMATTER
gl.xlocator = mticker.FixedLocator(np.arange(lon1-360,lon2-360+10,10))
gl.ylocator = mticker.FixedLocator(np.arange(lat1,lat2+5,5))
plt.title('Dynamic Tropopause (2PVU) Potential Temperature\n'+myhour+'Z '+fdate)
plt.figure(3)
ax = plt.axes(projection=ccrs.PlateCarree( ))
ax.set_extent([lon1,lon2,lat1,lat2],crs=ccrs.PlateCarree())
clevs2=np.arange(-10,11,1)
plt.contour(lon,lat,pv330/1e-6,clevs2,transform=ccrs.PlateCarree(),
colors='black',linewidths=0.5)
cp=plt.contourf(lon,lat,pv330/1e-6,clevs2,transform=ccrs.PlateCarree(),
cmap='RdBu_r')
cbar = plt.colorbar(cp, ticks=clevs2, orientation='horizontal')
cbar.set_label('PVU')
ax.add_feature(states, linewidth=0.8, color='gray')
ax.coastlines('50m', linewidth=0.8,color='gray')
gl = ax.gridlines(draw_labels=True)
gl.xlabels_top = gl.ylabels_right = False
gl.xformatter = LONGITUDE_FORMATTER
gl.yformatter = LATITUDE_FORMATTER
gl.xlocator = mticker.FixedLocator(np.arange(lon1-360,lon2-360+10,10))
gl.ylocator = mticker.FixedLocator(np.arange(lat1,lat2+5,5))
plt.title('Potential Vorticity on the 330K Surface\n'+myhour+'Z '+fdate)
plt.figure(4)
# P-lon cross-section of PV at latitude
# of lowest tropopause
ax = plt.axes()
pv_smooth=gaussian_filter(pv,sigma=1)
theta_smooth=gaussian_filter(theta,sigma=1)
plt.ylim(lev[0],lev[20])
#plt.yscale('log')
clevs=np.arange(2,32,2)
plt.contour(lon-360,lev[0:21],pv_smooth[0:21,maxloc[0,0],:]/1e-6,clevs,
colors='black')
cp=plt.contourf(lon-360,lev[0:21],pv_smooth[0:21,maxloc[0,0],:]/1e-6,clevs,
cmap='RdPu')
clevs2=np.arange(260,490,10)
plt.contour(lon-360,lev[0:21],theta_smooth[0:21,maxloc[0,0],:],[330],
colors='blue',linewidths=1.2)
cs=plt.contour(lon-360,lev[0:21],theta_smooth[0:21,maxloc[0,0],:],clevs2,
colors='blue',linewidths=0.5)
plt.clabel(cs,inline=1,fontsize=8,fmt='%4.0f')
cbar = plt.colorbar(cp, ticks=clevs, orientation='horizontal')
cbar.set_label('PVU')
plt.title('LON-P Cross-section of PV (shading) and '+r'$\theta$'+
' (blue contours) at '+str(latmax)+'N\n'+myhour+'Z '+fdate)
plt.show()