-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathfinetune_for_bp_prediction.py
executable file
·268 lines (232 loc) · 10.6 KB
/
finetune_for_bp_prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
#!/usr/bin/env python3
"""
Author: Ken Chen
Email: [email protected]
"""
import argparse
from tqdm import tqdm
import pickle
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
import json
import sys
import shutil
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from torch.utils.data import DataLoader, Dataset, Subset
sys.path.append("../scripts")
from utils import make_directory, make_logger, get_run_info, count_items
from transformers import BertForTokenClassification, BertTokenizer, BertConfig, AutoModelForTokenClassification, AutoTokenizer, AutoConfig, get_polynomial_decay_schedule_with_warmup
from transformers.modeling_outputs import ModelOutput
import bp_dataset
from sklearn.model_selection import GroupKFold, KFold
from sklearn.metrics import roc_auc_score, average_precision_score, f1_score
from torch.cuda.amp import autocast, GradScaler
import logging
logger = logging.getLogger(__name__)
@autocast()
@torch.no_grad()
def predict(model: BertForTokenClassification, loader: DataLoader, desc=None):
r"""
Return:
---
all_pre : listd
all_label : list
au : floatc
ap : float
f1 : float
num_pos : int
num_total : int
"""
model.eval()
device = next(model.parameters()).device
all_pred, all_label = list(), list()
for it, (ids, label, _) in enumerate(tqdm(loader, desc=desc)):
ids = ids.to(device)
logits = model.forward(ids).logits[:, 1:-1, 1] # (B, S, 2)
logits = logits.detach().cpu().reshape(-1)
label = label.reshape(-1)
k = torch.where(label >= 0)[0]
label = label[k].numpy()
logits = torch.sigmoid(logits[k].float()).numpy()
all_pred.append(logits)
all_label.append(label)
all_pred = np.concatenate(all_pred)
all_label = np.concatenate(all_label)
auc = roc_auc_score(all_label, all_pred)
ap = average_precision_score(all_label, all_pred)
f1 = f1_score(all_label, all_pred > 0.5)
return all_pred, all_label, auc, ap, f1, np.where(all_label > 0)[0].shape[0], len(all_label)
def get_args():
p = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
p.add_argument("--dnabert", action="store_true")
p.add_argument("--no-pretrain", action="store_true")
p.add_argument("--freeze-bert", type=int)
p.add_argument("-n", "--n-fold", type=int, default=5)
p.add_argument("-m", "--model-path", required=True)
p.add_argument("-b", "--batch-size", type=int, default=8, help="batch size")
p.add_argument("-lr", default=1e-5, type=float, help="learning rate")
p.add_argument("--patience", type=int, default=10, help="patience in early stopping")
p.add_argument("--num-workers", type=int, default=8, help="num_workers in dataloader")
p.add_argument('-d', "--device", required=False, help="device")
p.add_argument('-o', "--outdir", required=True, help="output directory")
p.add_argument('--seed', type=int, default=2020)
return p
if __name__ == "__main__":
args = get_args().parse_args()
args.outdir = make_directory(args.outdir)
logger = make_logger(filename=os.path.join(args.outdir, "train.log"))
logger.info(get_run_info(argv=sys.argv, args=args))
if args.dnabert:
tokenizer = AutoTokenizer.from_pretrained(args.model_path)
ds = bp_dataset.BranchPointData(tokenizer=tokenizer, dnabert_mode=True)
else:
ds = bp_dataset.BranchPointData()
logger.info("dataset: {}".format(ds))
if args.no_pretrain:
config = AutoConfig.from_pretrained(args.model_path)
config.num_labels = 2
model = AutoModelForTokenClassification(config)
else:
model = AutoModelForTokenClassification.from_pretrained(args.model_path, num_labels=2)
if args.freeze_bert is not None:
for n, p in model.bert.embeddings.named_parameters():
p.requires_grad = False
logger.info("freeze: {}".format(n))
for n, p in model.bert.encoder.named_parameters():
if int(n.split('.')[1]) < args.freeze_bert:
logger.info("freeze: {}".format(n))
p.requires_grad = False
logger.info("{}".format(model))
grouped_inds = list()
splits = GroupKFold(n_splits=args.n_fold)
for t1, t2 in splits.split(X=range(len(ds)), groups=ds.chroms): # split by chromosome
grouped_inds.append(t2)
for fold in range(args.n_fold):
logger.info("Fold{} (n={}/{}): {}".format(fold, len(ds) - len(grouped_inds[fold]), len(grouped_inds[fold]), count_items(ds.chroms[grouped_inds[fold]])))
fold_outdir = make_directory("{}/fold{}".format(args.outdir, fold))
model.save_pretrained(fold_outdir)
del model
device = torch.device("cuda")
best_ap = -1
wait = 0
# demo = ds[0]
# pickle.dump(demo, open("./{}/demo.data.pkl".format(args.outdir), 'wb'), protocol=pickle.HIGHEST_PROTOCOL)
for epoch in range(200):
if epoch > 0:
val_ap = np.mean(cv_ap)
else:
val_ap = None
cv_auc = list()
cv_ap = list()
cv_f1 = list()
cv_test_pred = list()
cv_test_label = list()
for fold in range(args.n_fold):
all_inds = grouped_inds[fold:] + grouped_inds[:fold]
test_inds = all_inds[0]
val_inds = all_inds[1]
train_inds = np.concatenate(all_inds[2:])
train_loader = DataLoader(
Subset(ds, indices=train_inds),
batch_size=args.batch_size,
drop_last=True,
num_workers=args.num_workers,
shuffle=True
)
val_loader = DataLoader(
Subset(ds, indices=val_inds),
batch_size=args.batch_size,
num_workers=args.num_workers,
)
test_loader = DataLoader(
Subset(ds, indices=test_inds),
batch_size=args.batch_size,
num_workers=args.num_workers,
)
fold_outdir = "{}/fold{}".format(args.outdir, fold)
ckpt = "{}/checkpoint.fold{}.pt".format(fold_outdir, fold)
epoch_loss = 0
epoch_ap = list()
epoch_auc = list()
if epoch == 0:
model = AutoModelForTokenClassification.from_pretrained(fold_outdir)
model = model.to(device)
optimizer = torch.optim.AdamW(
model.parameters(),
lr=args.lr,
weight_decay=1e-6
)
scaler = GradScaler()
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer=optimizer, factor=0.5, patience=1, mode="max", min_lr=1e-7)
else:
del model, optimizer, scaler
model = AutoModelForTokenClassification.from_pretrained(fold_outdir) # will be reload in model.load_state_dict
model = model.to(device)
optimizer = torch.optim.AdamW(
model.parameters(),
lr=args.lr,
weight_decay=1e-6
)
scaler = GradScaler()
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer=optimizer, factor=0.5, patience=1, mode="max", min_lr=1e-7)
d = torch.load(ckpt)
model.load_state_dict(d['model'])
optimizer.load_state_dict(d['optimizer'])
scaler.load_state_dict(d['scaler'])
scheduler.load_state_dict(d['scheduler'])
scheduler.step(val_ap)
model.train()
pbar = tqdm(train_loader, desc="Epoch{}-{}".format(epoch, fold), total=len(train_loader))
for it, (ids, label, _) in enumerate(pbar):
if epoch == 0 and fold == 0:
torch.save((ids, label), "{}/demo.pt".format(args.outdir))
ids = ids.to(device)
label = label.to(device)
optimizer.zero_grad()
with autocast():
logits = model.forward(ids).logits[:, 1:-1]
# loss = F.cross_entropy(logits.reshape(-1, 2), label.reshape(-1), label_smoothing=0.01)
loss = F.cross_entropy(logits.reshape(-1, 2), label.reshape(-1))
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
epoch_loss += loss.item()
pbar.set_postfix_str("loss/lr={:.5e}/{:.3e}".format(epoch_loss / (it + 1), optimizer.param_groups[-1]['lr']))
torch.save({
"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"scaler": scaler.state_dict(),
"scheduler": scheduler.state_dict(),
}, ckpt)
torch.save(model.state_dict(), "{}/model_weights.tmp.pt".format(fold_outdir))
# model.save_pretrained(fold_outdir)
_, _, auc, ap, f1, num_pos, num_all = predict(model, val_loader, desc="validating")
logger.info("Validation{}-{}(AUC/AP/F1): {:.4f} {:.4f} {:.4f} ({}/{}={:.3f})".format(epoch, fold, auc, ap, f1, num_pos, num_all, num_pos / num_all))
cv_auc.append(auc)
cv_ap.append(ap)
cv_f1.append(f1)
test_pred, test_label, auc, ap, f1, num_pos, num_all = predict(model, test_loader, desc="test")
logger.info("Test{}-{}(AUC/AP/F1): {:.4f} {:.4f} {:.4f} ({}/{}={:.3f})".format(epoch, fold, auc, ap, f1, num_pos, num_all, num_pos / num_all))
cv_test_pred.append(test_pred.astype(np.float16))
cv_test_label.append(test_label.astype(np.int8))
logger.info("CV-results(epoch={})(AUC/AP/F1): {:.4f} {:.4f} {:.4f}".format(epoch, np.mean(cv_auc), np.mean(cv_ap), np.mean(cv_f1)))
if np.mean(cv_ap) > best_ap:
best_ap = np.mean(cv_ap)
for fold in range(args.n_fold):
fold_outdir = "{}/fold{}".format(args.outdir, fold)
shutil.copy("{}/model_weights.tmp.pt".format(fold_outdir), "{}/pytorch_model.bin".format(fold_outdir))
with open("{}/test_results.txt".format(fold_outdir), 'w') as out:
for label, score in zip(cv_test_label[fold], cv_test_pred[fold]):
out.write("{:d}\t{:.4f}\n".format(label, score))
logger.info("best models saved\n")
wait = 0
else:
wait += 1
logger.info("wait: {}\n".format(wait))
if wait >= args.patience:
logger.info("early stopped!")
break