-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
253 lines (213 loc) · 9.36 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
"""
Skeleton Pretrain
"""
import os
import time
import torch
import logging
import argparse
import torch.nn as nn
import torch.optim as optim
from datetime import datetime
from torch_geometric.data import Batch
import torch_geometric.transforms as transforms
from torch_geometric.loader import DataListLoader
import models.model as model
from models.model import Discriminator
from models.semantics import Masked_Distance_Matrix
from utils.config import cfg
from utils.tools import create_folder
import dataset.dataset as dataset
from dataset import Normalize, BatchSampler
# Device setting
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def parse_args():
# Argument parse
parser = argparse.ArgumentParser(description='Command line arguments')
parser.add_argument('--cfg', default='./configs/train.yaml', type=str, help='Path to configuration file')
args = parser.parse_args()
cfg.merge_from_file(args.cfg)
cfg.freeze()
print(cfg)
def train_epoch(
model,
discriminator,
optimizerD,
optimizerG,
dataloader,
target_skeleton,
logger,
log_interval,
epoch,
device,
):
logger.info("Training Epoch {}".format(epoch+1).center(60, '-'))
start_time = time.time()
model.train()
rec_losses = []
pos_losses = []
cyc_losses = []
dis_losses = []
sdm_losses = []
adv_losses = []
smo_losses = []
rec_criterion = nn.MSELoss()
adv_criterion = nn.BCELoss()
cyc_criterion = nn.MSELoss()
smo_criterion = nn.MSELoss()
sdm_criterion = nn.MSELoss()
for batch_idx, data_list in enumerate(dataloader):
##################################################################
# reconstruction
##################################################################
target_list = data_list
target_ang, target_pos, target_hand_ang, _, _ = model(Batch.from_data_list(data_list).to(device), Batch.from_data_list(target_list).to(device))
source_pos = torch.stack([data.pos for data in data_list]).to(device)
source_ang = torch.stack([data.ang for data in data_list]).to(device)
pos_loss = nn.L1Loss()(target_pos[:,0,:], source_pos[:,0,:]) # root pos
pos_losses.append(pos_loss.item())
rec_loss = rec_criterion(target_ang, source_ang)*100 + pos_loss
rec_losses.append(rec_loss.item())
##################################################################
# retargeting
##################################################################
# fetch target
target = target_skeleton.random_sample()
target_list = [target] * len(data_list)
# forward
target_ang, target_pos, _, transform_weights, l_hand_trans, r_hand_trans, fake = model(Batch.from_data_list(data_list).to(device), Batch.from_data_list(target_list).to(device), return_hand_trans=True)
optimizerD.zero_grad()
##################################################################
# smoothness loss
##################################################################
vel = (target_ang[1:,...] - target_ang[:-1,...]) # [T-1, joint_num, xyz]
smo_loss = smo_criterion(vel[1:,...], vel[:-1,...])*1000
smo_losses.append(smo_loss.item())
##################################################################
# discriminator loss
##################################################################
## all-real batch
output = discriminator(Batch.from_data_list(data_list).to(device)).view(-1)
label = torch.full(output.shape, 1., dtype=torch.float, device=device)
loss_real = adv_criterion(output, label)
loss_real.backward()
## all-fake batch
output = discriminator(fake.detach()).view(-1)
label = torch.full(output.shape, 0., dtype=torch.float, device=device)
loss_fake = adv_criterion(output, label)
loss_fake.backward()
dis_loss = loss_real + loss_fake
dis_losses.append(dis_loss.item())
optimizerD.step()
output = discriminator(fake).view(-1)
label = torch.full(output.shape, 1., dtype=torch.float, device=device)
adv_loss = adv_criterion(output, label)
adv_losses.append(adv_loss.item())
adv_loss = adv_criterion(output, label)
adv_losses.append(adv_loss.item())
##################################################################
# cycle consistency
##################################################################
cycle_ang, cycle_pos, _, _, _ = model(fake, Batch.from_data_list(data_list).to(device))
cyc_loss = cyc_criterion(cycle_ang, torch.stack([data.ang for data in data_list]).to(device))*10 + \
nn.L1Loss()(cycle_pos[:,0,:], torch.stack([data.pos[0] for data in data_list]).to(device))*0.1
cyc_losses.append(cyc_loss.item())
##################################################################
# skeleton distance matrix
##################################################################
preserve_label = ["LeftArm", "LeftForeArm", "RightArm", "RightForeArm"]
source_sdm = Masked_Distance_Matrix(source_pos, data_list[0].parent)
preserve_index = [data_list[0].joints_name.index(label) for label in preserve_label]
source_sdm = source_sdm[:, preserve_index]
target_sdm = Masked_Distance_Matrix(target_pos, target_list[0].parent)
preserve_index = [target_list[0].joints_name.index(label) for label in preserve_label]
target_sdm = target_sdm[:, preserve_index]
sdm_loss = sdm_criterion(target_sdm, source_sdm) * 1000
sdm_losses.append(sdm_loss.item())
# zero gradient
optimizerG.zero_grad()
# backward
loss = rec_loss + cyc_loss + smo_loss + adv_loss + sdm_loss
loss.backward()
# gradient clipping
torch.nn.utils.clip_grad_norm_(model.parameters(), 10)
# optimize
optimizerG.step()
if (batch_idx + 1) % log_interval == 0:
logger.info(
"epoch {:04d} |\
iteration {:05d} |\
Rec {:.6f} |\
Pos {:.6f} |\
Cyc {:.6f} |\
Smo {:.6f} |\
Adv {:.6f} |\
Dis {:.6f}|\
Sdm {:.6f}".format(
epoch+1,
batch_idx+1,
rec_losses[-1],
pos_losses[-1],
cyc_losses[-1],
smo_losses[-1],
adv_losses[-1],
dis_losses[-1],
sdm_losses[-1]))
# Compute average loss
rec_loss = sum(rec_losses) / len(rec_losses)
pos_loss = sum(pos_losses) / len(pos_losses)
cyc_loss = sum(cyc_losses) / len(cyc_losses)
dis_loss = sum(dis_losses) / len(dis_losses)
sdm_loss = sum(sdm_losses) / len(sdm_losses)
adv_loss = sum(adv_losses) / len(adv_losses)
smo_loss = sum(smo_losses) / len(smo_losses)
train_loss = rec_loss + pos_loss + cyc_loss + sdm_loss + adv_loss + smo_loss
end_time = time.time()
logger.info(
"Epoch {:04d} |\
Training Time {:.2f} s |\
Average Training Loss {:.6f} |\
Rec {:.6f} |\
Pos {:.6f} |\
Cyc {:.6f} |\
Smo {:.6f} |\
Adv {:.6f} |\
Dis {:.6f} |\
Sdm {:.6f}".format(
epoch+1,
end_time-start_time,
train_loss, rec_loss, pos_loss, cyc_loss, smo_loss, adv_loss, dis_loss, sdm_loss))
return train_loss
def main():
# parse config yaml
parse_args()
# Create folder
create_folder(cfg.TRAIN.SAVE)
create_folder(cfg.TRAIN.LOG)
# Create logger
logging.basicConfig(level=logging.INFO, format="%(message)s", handlers=[logging.FileHandler(os.path.join(cfg.TRAIN.LOG, "{:%Y-%m-%d_%H-%M-%S}.log".format(datetime.now()))), logging.StreamHandler()])
logger = logging.getLogger("Motion Transfer")
# data preprocess
transform = transforms.Compose([Normalize()]) if cfg.DATASET.NORMALIZE else None
train_set = getattr(dataset, cfg.DATASET.TRAIN.SOURCE_NAME)(root=cfg.DATASET.TRAIN.SOURCE_PATH, transform=transform, pre_transform=None)
train_sampler = BatchSampler(train_set, batch_size=cfg.TRAIN.HYPER.BATCH_SIZE)
train_loader = DataListLoader(train_set, batch_sampler=train_sampler)
train_target = getattr(dataset, cfg.DATASET.TRAIN.TARGET_NAME)(root=cfg.DATASET.TRAIN.TARGET_PATH)
# Create model
SMNet = getattr(model, cfg.MODEL.NAME)(
cfg.MODEL.CHANNELS,
cfg.MODEL.DIM,
cfg.DATASET.NORMALIZE
).to(device)
# Create Discriminator
discriminator = Discriminator(cfg.MODEL.CHANNELS, cfg.MODEL.DIM).to(device)
# Create optimizer
optimizerD = optim.RMSprop(discriminator.parameters(), lr=0.00005)
optimizerG = optim.Adam(SMNet.parameters(), lr=cfg.TRAIN.HYPER.LEARNING_RATE, betas=(0.5, 0.999))
for epoch in range(cfg.TRAIN.HYPER.EPOCHS):
train_loss = train_epoch(SMNet, discriminator, optimizerD, optimizerG, train_loader, train_target, logger, cfg.TRAIN.LOG_INTERVAL, epoch, device)
# Save model
torch.save(SMNet.state_dict(), os.path.join(cfg.TRAIN.SAVE, "model_epoch_{:04d}_loss_{:04f}.pth".format(epoch+1, train_loss)))
torch.save(discriminator.state_dict(), os.path.join(cfg.TRAIN.SAVE, "disc_epoch_{:04d}.pth".format(epoch+1)))
if __name__ == "__main__":
main()