-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy patheval_models.py
43 lines (35 loc) · 1.3 KB
/
eval_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import os
import torch
import torch.nn as nn
import torch.optim as optim
import argparse
import loader
def evaluate(data_loader, model):
model.eval()
test_loss = 0.
correct = 0.
with torch.no_grad():
for i, (X, y) in enumerate(data_loader):
X, y = X.cuda(), y.cuda()
out = model(X)
test_loss += nn.CrossEntropyLoss(reduction='sum')(out, y).item()
pred = out.max(1, keepdim=True)[1]
correct += pred.eq(y.view_as(pred)).sum().item()
test_loss /= len(data_loader.dataset)
acc = correct / len(data_loader.dataset)
print('Test Acc: ', acc, 'Test Loss: ', test_loss)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--load')
args = parser.parse_args()
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
train_loader, test_loader = loader.mnist_loaders(args.batch_size)
if os.path.splitext(args.load)[1] == '.npz':
model, _ = loader.mnist_load_model(args.load, state_dict=True, tf=True)
else:
model, _ = loader.mnist_load_model(args.load, state_dict=True, tf=False)
model = model.cuda()
evaluate(test_loader, model)