-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathbase.py
208 lines (193 loc) · 7.07 KB
/
base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import torch
import os
import time
import numpy as np
from tqdm import tqdm
from collections import OrderedDict
from torch import optim
from torch.autograd import grad
from skimage.io import imsave
from torchvision.utils import save_image
from itertools import chain
class GAN:
"""
Base model for GAN models
"""
def __init__(self,
gen_fn,
disc_fn,
z_dim,
lamb=0.,
opt_g=optim.Adam,
opt_d=optim.Adam,
opt_d_args={'lr': 0.0002, 'betas': (0.5, 0.999)},
opt_g_args={'lr': 0.0002, 'betas': (0.5, 0.999)},
update_g_every=5,
handlers=[],
scheduler_fn=None,
scheduler_args={},
use_cuda='detect'):
assert use_cuda in [True, False, 'detect']
if use_cuda == 'detect':
use_cuda = True if torch.cuda.is_available() else False
self.z_dim = z_dim
self.update_g_every = update_g_every
self.g = gen_fn
self.d = disc_fn
self.lamb = lamb
self.beta = 0.0
optim_g = opt_g(filter(lambda p: p.requires_grad,
self.g.parameters()), **opt_g_args)
optim_d = opt_d(filter(lambda p: p.requires_grad,
self.d.parameters()), **opt_d_args)
self.optim = {
'g': optim_g,
'd': optim_d,
}
self.scheduler = {}
if scheduler_fn is not None:
for key in self.optim:
self.scheduler[key] = scheduler_fn(
self.optim[key], **scheduler_args)
self.handlers = handlers
self.use_cuda = use_cuda
if self.use_cuda:
self.g.cuda()
self.d.cuda()
self.last_epoch = 0
def _get_stats(self, dict_, mode):
stats = OrderedDict({})
for key in dict_.keys():
stats[key] = np.mean(dict_[key])
return stats
def sample_z(self, bs, seed=None):
"""Return a sample z ~ p(z)"""
if seed is not None:
rnd_state = np.random.RandomState(seed)
z = torch.from_numpy(
rnd_state.normal(0, 1, size=(bs, self.z_dim))
).float()
else:
z = torch.from_numpy(
np.random.normal(0, 1, size=(bs, self.z_dim))
).float()
if self.use_cuda:
z = z.cuda()
return z
def loss(self, prediction, target):
if not hasattr(target, '__len__'):
target = torch.ones_like(prediction)*target
if prediction.is_cuda:
target = target.cuda()
loss = torch.nn.BCELoss()
if prediction.is_cuda:
loss = loss.cuda()
return loss(prediction, target)
def _train(self):
self.g.train()
self.d.train()
def _eval(self):
self.g.eval()
self.d.eval()
def train_on_instance(self, z, x, **kwargs):
raise NotImplementedError()
def sample(self, bs, seed=None):
raise NotImplementedError()
def prepare_batch(self, batch):
raise NotImplementedError()
def train(self,
itr,
epochs,
model_dir,
result_dir,
save_every=1,
val_batch_size=None,
scheduler_fn=None,
scheduler_args={},
verbose=True):
for folder_name in [model_dir, result_dir]:
if folder_name is not None and not os.path.exists(folder_name):
os.makedirs(folder_name)
f_mode = 'w' if not os.path.exists("%s/results.txt" % result_dir) else 'a'
if val_batch_size is None:
val_batch_size = itr.batch_size
f = None
if result_dir is not None:
f = open("%s/results.txt" % result_dir, f_mode)
for epoch in range(self.last_epoch, epochs):
# Training
epoch_start_time = time.time()
if verbose:
pbar = tqdm(total=len(itr))
train_dict = OrderedDict({'epoch': epoch+1})
for b, batch in enumerate(itr):
if type(batch) not in [list, tuple]:
batch = [batch]
batch = self.prepare_batch(batch)
Z_batch = self.sample_z(batch[0].size()[0])
losses, outputs = self.train_on_instance(Z_batch, *batch,
iter=b+1)
for key in losses:
this_key = 'train_%s' % key
if this_key not in train_dict:
train_dict[this_key] = []
train_dict[this_key].append(losses[key])
pbar.update(1)
pbar.set_postfix(self._get_stats(train_dict, 'train'))
# Process handlers.
for handler_fn in self.handlers:
handler_fn(losses, [Z_batch] + batch, outputs,
{'epoch':epoch+1, 'iter':b+1, 'mode':'train'})
if verbose:
pbar.close()
# Step learning rates.
for key in self.scheduler:
self.scheduler[key].step()
all_dict = train_dict
for key in all_dict:
all_dict[key] = np.mean(all_dict[key])
for key in self.optim:
all_dict["lr_%s" % key] = \
self.optim[key].state_dict()['param_groups'][0]['lr']
all_dict['time'] = \
time.time() - epoch_start_time
str_ = ",".join([str(all_dict[key]) for key in all_dict])
print(str_)
if f is not None:
if (epoch+1) == 1:
# If we're not resuming, then write the header.
f.write(",".join(all_dict.keys()) + "\n")
f.write(str_ + "\n")
f.flush()
if (epoch+1) % save_every == 0 and model_dir is not None:
self.save(filename="%s/%i.pkl" % (model_dir, epoch+1),
epoch=epoch+1)
if f is not None:
f.close()
def save(self, filename, epoch, legacy=False):
dd = {}
dd['g'] = self.g.state_dict()
dd['d'] = self.d.state_dict()
for key in self.optim:
dd['optim_' + key] = self.optim[key].state_dict()
dd['epoch'] = epoch
torch.save(dd, filename)
def load(self, filename, legacy=False, ignore_d=False):
"""
ignore_d: if `True`, then don't load in the
discriminator.
"""
if not self.use_cuda:
map_location = lambda storage, loc: storage
else:
map_location = None
dd = torch.load(filename,
map_location=map_location)
self.g.load_state_dict(dd['g'])
if not ignore_d:
self.d.load_state_dict(dd['d'])
for key in self.optim:
if ignore_d and key == 'd':
continue
self.optim[key].load_state_dict(dd['optim_'+key])
self.last_epoch = dd['epoch']