-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathhologan.py
202 lines (181 loc) · 6.67 KB
/
hologan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import torch
import numpy as np
from base import GAN
from torchvision.utils import save_image
class HoloGAN(GAN):
def __init__(self, angles, *args, **kwargs):
super(HoloGAN, self).__init__(*args, **kwargs)
self.angles = self._angles_to_dict(angles)
self.rot2idx = {
'x': 0,
'y': 1,
'z': 2
}
def _to_radians(self, deg):
return deg * (np.pi / 180)
def _angles_to_dict(self, angles):
angles = {
'min_angle_x': self._to_radians(angles[0]),
'max_angle_x': self._to_radians(angles[1]),
'min_angle_y': self._to_radians(angles[2]),
'max_angle_y': self._to_radians(angles[3]),
'min_angle_z': self._to_radians(angles[4]),
'max_angle_z': self._to_radians(angles[5])
}
return angles
def rot_matrix_x(self, theta):
"""
theta: measured in radians
"""
mat = np.zeros((3,3)).astype(np.float32)
mat[0, 0] = 1.
mat[1, 1] = np.cos(theta)
mat[1, 2] = -np.sin(theta)
mat[2, 1] = np.sin(theta)
mat[2, 2] = np.cos(theta)
return mat
def rot_matrix_y(self, theta):
"""
theta: measured in radians
"""
mat = np.zeros((3,3)).astype(np.float32)
mat[0, 0] = np.cos(theta)
mat[0, 2] = np.sin(theta)
mat[1, 1] = 1.
mat[2, 0] = -np.sin(theta)
mat[2, 2] = np.cos(theta)
return mat
def rot_matrix_z(self, theta):
"""
theta: measured in radians
"""
mat = np.zeros((3,3)).astype(np.float32)
mat[0, 0] = np.cos(theta)
mat[0, 1] = -np.sin(theta)
mat[1, 0] = np.sin(theta)
mat[1, 1] = np.cos(theta)
mat[2, 2] = 1.
return mat
def pad_rotmat(self, theta):
"""theta = (3x3) rotation matrix"""
return np.hstack((theta, np.zeros((3,1))))
def sample_angles(self,
bs,
min_angle_x,
max_angle_x,
min_angle_y,
max_angle_y,
min_angle_z,
max_angle_z):
"""Sample random yaw, pitch, and roll angles"""
angles = []
for i in range(bs):
rnd_angles = [
np.random.uniform(min_angle_x, max_angle_x),
np.random.uniform(min_angle_y, max_angle_y),
np.random.uniform(min_angle_z, max_angle_z),
]
angles.append(rnd_angles)
return np.asarray(angles)
def get_theta(self, angles):
'''Construct a rotation matrix from angles.
This uses the Euler angle representation. But
it should also work if you use an axis-angle
representation.
'''
bs = len(angles)
theta = np.zeros((bs, 3, 4))
angles_x = angles[:, 0]
angles_y = angles[:, 1]
angles_z = angles[:, 2]
for i in range(bs):
theta[i] = self.pad_rotmat(
np.dot(np.dot(self.rot_matrix_z(angles_z[i]), self.rot_matrix_y(angles_y[i])),
self.rot_matrix_x(angles_x[i]))
)
return torch.from_numpy(theta).float()
def prepare_batch(self, batch):
if len(batch) != 1:
raise Exception("Expected batch to only contain X")
X_batch = batch[0].float()
if self.use_cuda:
X_batch = X_batch.cuda()
return [X_batch]
def sample_z(self, *args, **kwargs):
return super(HoloGAN, self).sample_z(*args, **kwargs)
def sample(self, bs, seed=None):
"""Return a sample G(z)"""
self._eval()
with torch.no_grad():
z_batch = self.sample_z(bs, seed=seed)
angles = self.sample_angles(z_batch.size(0),
**self.angles)
thetas = self.get_theta(angles)
if z_batch.is_cuda:
thetas = thetas.cuda()
gz = self.g(z_batch, thetas)
return gz
def _generate_rotations(self,
z_batch,
axes=['x', 'y', 'z'],
min_angle=None,
max_angle=None,
num=5):
dd = dict()
for rot_mode in axes:
if min_angle is None:
min_angle = self.angles['min_angle_%s' % rot_mode]
if max_angle is None:
max_angle = self.angles['max_angle_%s' % rot_mode]
pbuf = []
with torch.no_grad():
for p in np.linspace(min_angle, max_angle, num=num):
#enc_rot = gan.rotate_random(enc, angle=p)
angles = np.zeros((z_batch.size(0), 3)).astype(np.float32)
angles[:, self.rot2idx[rot_mode]] += p
thetas = self.get_theta(angles)
if z_batch.is_cuda:
thetas = thetas.cuda()
x_fake = self.g(z_batch, thetas)
pbuf.append(x_fake*0.5 + 0.5)
dd[rot_mode] = pbuf
return dd
def train_on_instance(self, z, x, **kwargs):
for key in self.optim:
self.optim[key].zero_grad()
self._train()
losses = {}
# Train the generator.
angles = self.sample_angles(z.size(0), **self.angles)
thetas = self.get_theta(angles)
angles_t = torch.from_numpy(angles).float().cuda()
if x.is_cuda:
thetas = thetas.cuda()
fake = self.g(z, thetas)
d_fake, g_z_pred, g_t_pred = self.d(fake)
gen_loss = self.loss(d_fake, 1)
g_z_loss = torch.mean((g_z_pred-z)**2)
g_t_loss = torch.mean((g_t_pred-angles_t)**2)
if (kwargs['iter']-1) % self.update_g_every == 0:
(gen_loss + self.lamb*(g_z_loss+g_t_loss)).backward()
self.optim['g'].step()
# Train the discriminator.
self.optim['d'].zero_grad()
d_fake, d_z_pred, d_t_pred = self.d(fake.detach())
d_real, _, _ = self.d(x)
d_loss = self.loss(d_real, 1) + self.loss(d_fake, 0)
d_z_loss = torch.mean((d_z_pred-z)**2)
d_t_loss = torch.mean((d_t_pred-angles_t)**2)
(d_loss + self.lamb*(d_z_loss+d_t_loss)).backward()
self.optim['d'].step()
losses['g_loss'] = gen_loss.item()
losses['d_loss'] = d_loss.item() / 2.
losses['g_z_loss'] = g_z_loss.item()
losses['d_z_loss'] = d_z_loss.item()
losses['g_t_loss'] = g_t_loss.item()
losses['d_t_loss'] = d_t_loss.item()
outputs = {
'x': x.detach(),
'gz': fake.detach(),
}
return losses, outputs