First, create directory ./blob/data
and download all the datasets.
- Download LaPa.tar.gz from https://github.com/JDAI-CV/lapa-dataset.
- Uncompress to
./blob/data/LaPa
, make sure./blob/data/LaPa/{test, train, val}/
all exist.
- Download CelebAMask-HQ.zip from https://github.com/switchablenorms/CelebAMask-HQ.
- Uncompress to
./blob/data/CelebAMask-HQ
, make sure./blob/data/CelebAMask-HQ/{CelebA-HQ-img, CelebAMask-HQ-mask-anno}/
all exist.
- Download the annotations from http://mmlab.ie.cuhk.edu.hk/projects/compositional/AFLWinfo_release.mat to
./blob/data/AFLW-19/AFLWinfo_release.mat
. - Download the images following instructions given by https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/aflw/#download. Uncompress the aflw-images-{0,2,3}.tar.gz files to
./blob/data/AFLW-19/
, make sure./blob/data/AFLW-19/data/flickr/{0, 2, 3}/
exists.
- Download the IBUG300W and WFLW annotations from https://github.com/HRNet/HRNet-Facial-Landmark-Detection#data.
- Download IBUG300W images from
- Download WFLW images from https://wywu.github.io/projects/LAB/WFLW.html.
- Uncompress these files, make sure these paths exist:
- IBUG300W images:
./blob/data/IBUG300W/{ibug, afw, helen, lfpw}/
- IBUG300W annotations (from HRNet):
./blob/data/IBUG300W/face_landmarks_300w_{train, valid_challenge, valid_common}.csv
- WFLW images:
./blob/data/WFLW/WFLW_images/
- WFLW annotations (from HRNet):
./blob/data/WFLW/face_landmarks_300w_{train, test, test_{blur, expression, illumination, largepose, makeup, occlusion}}.csv
- IBUG300W images:
The tree of ./blob/data
should look like:
blob/data/
│
├── LaPa/
│ ├── test/
│ ├── train/
│ └── val/
│
├── CelebAMask-HQ/
│ ├── CelebA-HQ-img/
│ ├── CelebAMask-HQ-mask-anno/
│ ├── list_eval_partition.txt
│ └── CelebA-HQ-to-CelebA-mapping.txt
│
├── AFLW-19/
│ ├── AFLWinfo_release.mat
│ └── data/
│ └── flickr/
│
├── IBUG300W/
│ ├── ibug/
│ ├── afw/
│ ├── helen/
│ ├── lfpw/
│ ├── face_landmarks_300w_train.csv
│ ├── face_landmarks_300w_valid_challenge.csv
│ └── face_landmarks_300w_valid_common.csv
│
└── WFLW/
├── WFLW_images/
├── face_landmarks_wflw_test_blur.csv
├── face_landmarks_wflw_test_expression.csv
├── face_landmarks_wflw_test_largepose.csv
├── face_landmarks_wflw_test_occlusion.csv
├── face_landmarks_wflw_test.csv
├── face_landmarks_wflw_test_illumination.csv
├── face_landmarks_wflw_test_makeup.csv
└── face_landmarks_wflw_train.csv
Now let's repack all these datasets into uniform formats for efficient reading. Just run with
python -m farl.datasets.prepare ./blob/data
Finally, we should have the following files under ./blob/data
:
LaPa.train.zip
LaPa.test.zip
CelebAMaskHQ.train.zip
CelebAMaskHQ.test.zip
AFLW-19.train.zip
AFLW-19.test.zip
AFLW-19.test_frontal.zip
IBUG300W.train.zip
IBUG300W.test_common.zip
IBUG300W.test_challenging.zip
WFLW.train.zip
WFLW.test_all.zip
WFLW.test_blur.zip
WFLW.test_expression.zip
WFLW.test_illumination.zip
WFLW.test_largepose.zip
WFLW.test_makeup.zip
WFLW.test_occlusion.zip