diff --git a/reports/eda-sense8.nb.html b/reports/eda-sense8.nb.html deleted file mode 100644 index 7aed804..0000000 --- a/reports/eda-sense8.nb.html +++ /dev/null @@ -1,552 +0,0 @@ - - - - - - - - - - - - - -EDA Sense8 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - -
-
-
-
-
- -
- - - - - - - - - - - - -

Analisaremos os episódios da falecida série Sense8.

-

Houve duas temporadas: quais foram os melhores episódios? A melhor temporada?

- - - -
episodes = read_csv(here("data/series_from_imdb.csv"), 
-                    progress = FALSE,
-                    col_types = cols(.default = col_double(), 
-                                     series_name = col_character(), 
-                                     episode = col_character(), 
-                                     url = col_character(),
-                                     season = col_character())) %>% 
-    filter(series_name == "Sense8") 
- - - -
-

Quantas avaliações temos por episódio?

-

Cada episódio foi avaliado por um número diferente de usuários do IMDB. Vejamos como é essa distribuição.

- - - -
episodes %>% 
-    ggplot(aes(x = season, y = user_votes)) +
-    geom_violin() + 
-    geom_jitter(width = .07) 
- - -

- - - - - - -
episodes %>% 
-    ggplot(aes(x = season_ep, y = user_votes))  + 
-    geom_line() + 
-    facet_wrap(~ season)
- - -

- - -
NA
- - - -

A quantidade de avaliações varia bastante. Exceto pelo primeiro episódio, os episódios da segunda temporada tem muito menos avaliações. Talvez porque os dados foram coletados logo depois que a segunda temporada foi lançada.

-
-
-

Qual a distribuição da avaliação dos episódios?

- - - -
episodes %>% 
-    ggplot(aes(x = "Sense8", y = user_rating)) + 
-    geom_jitter(width = .05) +
-    ylim(5, 10) + 
-    labs(x = "Episódios", y = "Avaliação no IMDB")
- - -

- - - - - - -

- - - - - - -
sumarios = episodes %>% 
-    summarise(mediana = median(user_rating), 
-              media = mean(user_rating))
-episodes %>% 
-    ggplot(aes(x = user_rating)) + 
-    geom_histogram(binwidth = .5, fill = "white", color = "black") + 
-    geom_vline(xintercept = sumarios$media, color = "darkorange") + 
-    geom_vline(xintercept = sumarios$mediana, color = "brown") 
- - -

- - - -
-

Qual é esse episódio pior avaliado?

- - - -
episodes %>% 
-    filter(user_rating == min(user_rating))
- - - -
-
-
-

Qual a pior/melhor temporada segundo o IMDB?

- - - -
episodes %>% 
-    ggplot(aes(x = season, y = user_rating)) + 
-    geom_boxplot(width = .5, outlier.color = NA) +   
-    geom_jitter(width = .1, size = 2, alpha = .5, color = "red")
- - -

- - - -
-

Há padrões na avaliação ao longo do tempo?

- - - -
episodes %>% 
-  ggplot(aes(x = season_ep, y = user_rating, color = season)) + 
-  geom_line() + 
-  geom_point() 
- - -

- - - -

Correlações

- - - -
episodes %>% 
-    group_by(season) %>% 
-    summarise(correlacao_linear = cor(season_ep, user_rating, 
-                                      method = "pearson"), 
-              correlacao_kendall = cor(season_ep, user_rating, 
-                                       method = "kendall"))
- - -
- -
- - - -
-
-
-

Qual o episódio mais detestado?

- - - -
episodes %>% 
-  ggplot(aes(x = season_ep, y = r1, color = season)) + 
-  geom_line() 
- - -

- - - -
-

E amado?

- - - -
episodes %>%
-    ggplot(aes(x = season_ep, y = r10, color = season)) +
-    geom_line() +
-    scale_x_continuous(breaks = 1:12)
- - -

- - - -
-
-

Amor e ódio andam juntos?

-

Quais são episódios que estão entre os mais amados e mais odiados?

- - - -
episodes =  episodes %>%
-    mutate(
-        rank_odiados = row_number(r1), # maior = mais odiado
-        rank_amados = row_number(r10), # maior = mais amado
-        amado_odiado = rank_amados * rank_odiados) # maior = mais amado E odiado
-    
-episodes %>%
-    ggplot(aes(
-        x = r1,
-        y = r10,
-        color = season,
-        size = amado_odiado,
-        label = season_ep
-    )) +
-    geom_point(alpha = .7) +
-    geom_text(nudge_x = .001, nudge_y = -.01) 
- - -

- - - - - - -
episodes %>% 
-    arrange(-amado_odiado)
- - -
- -
- - - - -
-
- -
LS0tCnRpdGxlOiAiRURBIFNlbnNlOCIKb3V0cHV0OgogIGh0bWxfbm90ZWJvb2s6CiAgICB0b2M6IHllcwogICAgdG9jX2Zsb2F0OiB5ZXMKICBodG1sX2RvY3VtZW50OgogICAgZGZfcHJpbnQ6IHBhZ2VkCiAgICB0b2M6IHllcwogICAgdG9jX2Zsb2F0OiB5ZXMKLS0tCgpgYGB7ciBzZXR1cCwgZWNobz1GQUxTRSwgd2FybmluZz1GQUxTRSwgbWVzc2FnZT1GQUxTRX0KbGlicmFyeSh0aWR5dmVyc2UpCmxpYnJhcnkoaGVyZSkKdGhlbWVfc2V0KHRoZW1lX2J3KCkpCmBgYAoKQW5hbGlzYXJlbW9zIG9zIGVwaXPDs2Rpb3MgZGEgZmFsZWNpZGEgc8OpcmllIFNlbnNlOC4gCgpIb3V2ZSBkdWFzIHRlbXBvcmFkYXM6IHF1YWlzIGZvcmFtIG9zIG1lbGhvcmVzIGVwaXPDs2Rpb3M/IEEgbWVsaG9yIHRlbXBvcmFkYT8KCmBgYHtyfQplcGlzb2RlcyA9IHJlYWRfY3N2KGhlcmUoImRhdGEvc2VyaWVzX2Zyb21faW1kYi5jc3YiKSwgCiAgICAgICAgICAgICAgICAgICAgcHJvZ3Jlc3MgPSBGQUxTRSwKICAgICAgICAgICAgICAgICAgICBjb2xfdHlwZXMgPSBjb2xzKC5kZWZhdWx0ID0gY29sX2RvdWJsZSgpLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHNlcmllc19uYW1lID0gY29sX2NoYXJhY3RlcigpLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGVwaXNvZGUgPSBjb2xfY2hhcmFjdGVyKCksIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdXJsID0gY29sX2NoYXJhY3RlcigpLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgc2Vhc29uID0gY29sX2NoYXJhY3RlcigpKSkgJT4lIAogICAgZmlsdGVyKHNlcmllc19uYW1lID09ICJTZW5zZTgiKSAKYGBgCgojIyBRdWFudGFzIGF2YWxpYcOnw7VlcyB0ZW1vcyBwb3IgZXBpc8OzZGlvPyAKCkNhZGEgZXBpc8OzZGlvIGZvaSBhdmFsaWFkbyBwb3IgdW0gbsO6bWVybyBkaWZlcmVudGUgZGUgdXN1w6FyaW9zIGRvIElNREIuIFZlamFtb3MgY29tbyDDqSBlc3NhIGRpc3RyaWJ1acOnw6NvLiAKCmBgYHtyfQplcGlzb2RlcyAlPiUgCiAgICBnZ3Bsb3QoYWVzKHggPSBzZWFzb24sIHkgPSB1c2VyX3ZvdGVzKSkgKwogICAgZ2VvbV92aW9saW4oKSArIAogICAgZ2VvbV9qaXR0ZXIod2lkdGggPSAuMDcpIApgYGAKCgpgYGB7cn0KZXBpc29kZXMgJT4lIAogICAgZ2dwbG90KGFlcyh4ID0gc2Vhc29uX2VwLCB5ID0gdXNlcl92b3RlcykpICArIAogICAgZ2VvbV9saW5lKCkgKyAKICAgIGZhY2V0X3dyYXAofiBzZWFzb24pCiAgICAgICAgICAgICAgIApgYGAKCkEgcXVhbnRpZGFkZSBkZSBhdmFsaWHDp8O1ZXMgdmFyaWEgYmFzdGFudGUuIEV4Y2V0byBwZWxvIHByaW1laXJvIGVwaXPDs2Rpbywgb3MgZXBpc8OzZGlvcyBkYSBzZWd1bmRhIHRlbXBvcmFkYSB0ZW0gbXVpdG8gbWVub3MgYXZhbGlhw6fDtWVzLiBUYWx2ZXogcG9ycXVlIG9zIGRhZG9zIGZvcmFtIGNvbGV0YWRvcyBsb2dvIGRlcG9pcyBxdWUgYSBzZWd1bmRhIHRlbXBvcmFkYSBmb2kgbGFuw6dhZGEuIAoKIyMgUXVhbCBhIGRpc3RyaWJ1acOnw6NvIGRhIGF2YWxpYcOnw6NvIGRvcyBlcGlzw7NkaW9zPwoKYGBge3J9CmVwaXNvZGVzICU+JSAKICAgIGdncGxvdChhZXMoeCA9ICJTZW5zZTgiLCB5ID0gdXNlcl9yYXRpbmcpKSArIAogICAgZ2VvbV9qaXR0ZXIod2lkdGggPSAuMDUpICsKICAgIHlsaW0oNSwgMTApICsgCiAgICBsYWJzKHggPSAiRXBpc8OzZGlvcyIsIHkgPSAiQXZhbGlhw6fDo28gbm8gSU1EQiIpCmBgYAoKYGBge3J9CmVwaXNvZGVzICU+JSAKICAgIGdncGxvdChhZXMoeCA9IHVzZXJfcmF0aW5nKSkgKyAKICAgIGdlb21faGlzdG9ncmFtKGJpbndpZHRoID0gLjUsIGZpbGwgPSAicGluayIsIGNvbG9yID0gImJsYWNrIikgKyAKICAgIGdlb21fcnVnKGFscGhhID0gLjUsIHNpemUgPSAxLjIpCgpgYGAKCmBgYHtyfQpzdW1hcmlvcyA9IGVwaXNvZGVzICU+JSAKICAgIHN1bW1hcmlzZShtZWRpYW5hID0gbWVkaWFuKHVzZXJfcmF0aW5nKSwgCiAgICAgICAgICAgICAgbWVkaWEgPSBtZWFuKHVzZXJfcmF0aW5nKSkKCmVwaXNvZGVzICU+JSAKICAgIGdncGxvdChhZXMoeCA9IHVzZXJfcmF0aW5nKSkgKyAKICAgIGdlb21faGlzdG9ncmFtKGJpbndpZHRoID0gLjUsIGZpbGwgPSAid2hpdGUiLCBjb2xvciA9ICJibGFjayIpICsgCiAgICBnZW9tX3ZsaW5lKHhpbnRlcmNlcHQgPSBzdW1hcmlvcyRtZWRpYSwgY29sb3IgPSAiZGFya29yYW5nZSIpICsgCiAgICBnZW9tX3ZsaW5lKHhpbnRlcmNlcHQgPSBzdW1hcmlvcyRtZWRpYW5hLCBjb2xvciA9ICJicm93biIpIApgYGAKCiMjIyBRdWFsIMOpIGVzc2UgZXBpc8OzZGlvIHBpb3IgYXZhbGlhZG8/IAoKYGBge3J9CmVwaXNvZGVzICU+JSAKICAgIGZpbHRlcih1c2VyX3JhdGluZyA9PSBtaW4odXNlcl9yYXRpbmcpKQpgYGAKCgojIyBRdWFsIGEgcGlvci9tZWxob3IgdGVtcG9yYWRhIHNlZ3VuZG8gbyBJTURCPwoKYGBge3J9CmVwaXNvZGVzICU+JSAKICAgIGdncGxvdChhZXMoeCA9IHNlYXNvbiwgeSA9IHVzZXJfcmF0aW5nKSkgKyAKICAgIGdlb21fYm94cGxvdCh3aWR0aCA9IC41LCBvdXRsaWVyLmNvbG9yID0gTkEpICsgICAKICAgIGdlb21faml0dGVyKHdpZHRoID0gLjEsIHNpemUgPSAyLCBhbHBoYSA9IC41LCBjb2xvciA9ICJyZWQiKQpgYGAKCgojIyMgSMOhIHBhZHLDtWVzIG5hIGF2YWxpYcOnw6NvIGFvIGxvbmdvIGRvIHRlbXBvPwoKYGBge3J9CmVwaXNvZGVzICU+JSAKICBnZ3Bsb3QoYWVzKHggPSBzZWFzb25fZXAsIHkgPSB1c2VyX3JhdGluZywgY29sb3IgPSBzZWFzb24pKSArIAogIGdlb21fbGluZSgpICsgCiAgZ2VvbV9wb2ludCgpIApgYGAKCkNvcnJlbGHDp8O1ZXMKCmBgYHtyfQplcGlzb2RlcyAlPiUgCiAgICBncm91cF9ieShzZWFzb24pICU+JSAKICAgIHN1bW1hcmlzZShjb3JyZWxhY2FvX2xpbmVhciA9IGNvcihzZWFzb25fZXAsIHVzZXJfcmF0aW5nLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtZXRob2QgPSAicGVhcnNvbiIpLCAKICAgICAgICAgICAgICBjb3JyZWxhY2FvX2tlbmRhbGwgPSBjb3Ioc2Vhc29uX2VwLCB1c2VyX3JhdGluZywgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1ldGhvZCA9ICJrZW5kYWxsIikpCgpgYGAKCiMjIFF1YWwgbyBlcGlzw7NkaW8gbWFpcyBkZXRlc3RhZG8/IAoKYGBge3J9CmVwaXNvZGVzICU+JSAKICAgIGdncGxvdChhZXMoeCA9IHNlYXNvbl9lcCwgeSA9IHIxLCBjb2xvciA9IHNlYXNvbikpICsgCiAgICBnZW9tX2xpbmUoKSArIAogICAgc2NhbGVfeF9jb250aW51b3VzKGJyZWFrcyA9IDE6MTIpCmBgYAoKIyMjIEUgYW1hZG8/IAoKYGBge3J9CmVwaXNvZGVzICU+JQogICAgZ2dwbG90KGFlcyh4ID0gc2Vhc29uX2VwLCB5ID0gcjEwLCBjb2xvciA9IHNlYXNvbikpICsKICAgIGdlb21fbGluZSgpICsKICAgIHNjYWxlX3hfY29udGludW91cyhicmVha3MgPSAxOjEyKQpgYGAKCiMjIyBBbW9yIGUgw7NkaW8gYW5kYW0ganVudG9zPwoKUXVhaXMgc8OjbyBlcGlzw7NkaW9zIHF1ZSBlc3TDo28gZW50cmUgb3MgbWFpcyBhbWFkb3MgZSBtYWlzIG9kaWFkb3M/IAoKYGBge3J9CmVwaXNvZGVzID0gIGVwaXNvZGVzICU+JQogICAgbXV0YXRlKAogICAgICAgIHJhbmtfb2RpYWRvcyA9IHJvd19udW1iZXIocjEpLCAjIG1haW9yID0gbWFpcyBvZGlhZG8KICAgICAgICByYW5rX2FtYWRvcyA9IHJvd19udW1iZXIocjEwKSwgIyBtYWlvciA9IG1haXMgYW1hZG8KICAgICAgICBhbWFkb19vZGlhZG8gPSByYW5rX2FtYWRvcyAqIHJhbmtfb2RpYWRvcykgIyBtYWlvciA9IG1haXMgYW1hZG8gRSBvZGlhZG8KICAgIAplcGlzb2RlcyAlPiUKICAgIGdncGxvdChhZXMoCiAgICAgICAgeCA9IHIxLAogICAgICAgIHkgPSByMTAsCiAgICAgICAgY29sb3IgPSBzZWFzb24sCiAgICAgICAgc2l6ZSA9IGFtYWRvX29kaWFkbywKICAgICAgICBsYWJlbCA9IHNlYXNvbl9lcAogICAgKSkgKwogICAgZ2VvbV9wb2ludChhbHBoYSA9IC43KSArCiAgICBnZW9tX3RleHQobnVkZ2VfeCA9IC4wMDEsIG51ZGdlX3kgPSAtLjAxKSAKYGBgCgpgYGB7cn0KZXBpc29kZXMgJT4lIAogICAgYXJyYW5nZSgtYW1hZG9fb2RpYWRvKQpgYGAKCg==
- - -
-
- -
- - - - - - - -