Skip to content

Latest commit

 

History

History
236 lines (205 loc) · 5.69 KB

lock.md

File metadata and controls

236 lines (205 loc) · 5.69 KB

lock

futex

// This implementation depends on OS-specific implementations of
//
//    futexsleep(addr *uint32, val uint32, ns int64)
//        Atomically,
//            if *addr == val { sleep }
//        Might be woken up spuriously; that's allowed.
//        Don't sleep longer than ns; ns < 0 means forever.
//
//    futexwakeup(addr *uint32, cnt uint32)
//        If any procs are sleeping on addr, wake up at most cnt.

const (
    mutex_unlocked = 0
    mutex_locked   = 1
    mutex_sleeping = 2

    active_spin     = 4
    active_spin_cnt = 30
    passive_spin    = 1
)

// Possible lock states are mutex_unlocked, mutex_locked and mutex_sleeping.
// mutex_sleeping means that there is presumably at least one sleeping thread.
// Note that there can be spinning threads during all states - they do not
// affect mutex's state.

// We use the uintptr mutex.key and note.key as a uint32.
//go:nosplit
func key32(p *uintptr) *uint32 {
    return (*uint32)(unsafe.Pointer(p))
}

func lock(l *mutex) {
    gp := getg()

    if gp.m.locks < 0 {
        throw("runtime·lock: lock count")
    }
    gp.m.locks++

    // Speculative grab for lock.
    v := atomic.Xchg(key32(&l.key), mutex_locked)
    if v == mutex_unlocked {
        return
    }

    // wait is either MUTEX_LOCKED or MUTEX_SLEEPING
    // depending on whether there is a thread sleeping
    // on this mutex. If we ever change l->key from
    // MUTEX_SLEEPING to some other value, we must be
    // careful to change it back to MUTEX_SLEEPING before
    // returning, to ensure that the sleeping thread gets
    // its wakeup call.
    wait := v

    // On uniprocessors, no point spinning.
    // On multiprocessors, spin for ACTIVE_SPIN attempts.
    spin := 0
    if ncpu > 1 {
        spin = active_spin
    }
    for {
        // Try for lock, spinning.
        for i := 0; i < spin; i++ {
            for l.key == mutex_unlocked {
                if atomic.Cas(key32(&l.key), mutex_unlocked, wait) {
                    return
                }
            }
            procyield(active_spin_cnt)
        }

        // Try for lock, rescheduling.
        for i := 0; i < passive_spin; i++ {
            for l.key == mutex_unlocked {
                if atomic.Cas(key32(&l.key), mutex_unlocked, wait) {
                    return
                }
            }
            osyield()
        }

        // Sleep.
        v = atomic.Xchg(key32(&l.key), mutex_sleeping)
        if v == mutex_unlocked {
            return
        }
        wait = mutex_sleeping
        futexsleep(key32(&l.key), mutex_sleeping, -1)
    }
}

func unlock(l *mutex) {
    v := atomic.Xchg(key32(&l.key), mutex_unlocked)
    if v == mutex_unlocked {
        throw("unlock of unlocked lock")
    }
    if v == mutex_sleeping {
        futexwakeup(key32(&l.key), 1)
    }

    gp := getg()
    gp.m.locks--
    if gp.m.locks < 0 {
        throw("runtime·unlock: lock count")
    }
    if gp.m.locks == 0 && gp.preempt { // restore the preemption request in case we've cleared it in newstack
        gp.stackguard0 = stackPreempt
    }
}

// One-time notifications.
func noteclear(n *note) {
    n.key = 0
}

func notewakeup(n *note) {
    old := atomic.Xchg(key32(&n.key), 1)
    if old != 0 {
        print("notewakeup - double wakeup (", old, ")\n")
        throw("notewakeup - double wakeup")
    }
    futexwakeup(key32(&n.key), 1)
}

func notesleep(n *note) {
    gp := getg()
    if gp != gp.m.g0 {
        throw("notesleep not on g0")
    }
    ns := int64(-1)
    if *cgo_yield != nil {
        // Sleep for an arbitrary-but-moderate interval to poll libc interceptors.
        ns = 10e6
    }
    for atomic.Load(key32(&n.key)) == 0 {
        gp.m.blocked = true
        futexsleep(key32(&n.key), 0, ns)
        if *cgo_yield != nil {
            asmcgocall(*cgo_yield, nil)
        }
        gp.m.blocked = false
    }
}

// May run with m.p==nil if called from notetsleep, so write barriers
// are not allowed.
//
//go:nosplit
//go:nowritebarrier
func notetsleep_internal(n *note, ns int64) bool {
    gp := getg()

    if ns < 0 {
        if *cgo_yield != nil {
            // Sleep for an arbitrary-but-moderate interval to poll libc interceptors.
            ns = 10e6
        }
        for atomic.Load(key32(&n.key)) == 0 {
            gp.m.blocked = true
            futexsleep(key32(&n.key), 0, ns)
            if *cgo_yield != nil {
                asmcgocall(*cgo_yield, nil)
            }
            gp.m.blocked = false
        }
        return true
    }

    if atomic.Load(key32(&n.key)) != 0 {
        return true
    }

    deadline := nanotime() + ns
    for {
        if *cgo_yield != nil && ns > 10e6 {
            ns = 10e6
        }
        gp.m.blocked = true
        futexsleep(key32(&n.key), 0, ns)
        if *cgo_yield != nil {
            asmcgocall(*cgo_yield, nil)
        }
        gp.m.blocked = false
        if atomic.Load(key32(&n.key)) != 0 {
            break
        }
        now := nanotime()
        if now >= deadline {
            break
        }
        ns = deadline - now
    }
    return atomic.Load(key32(&n.key)) != 0
}

func notetsleep(n *note, ns int64) bool {
    gp := getg()
    if gp != gp.m.g0 && gp.m.preemptoff != "" {
        throw("notetsleep not on g0")
    }

    return notetsleep_internal(n, ns)
}

// same as runtime·notetsleep, but called on user g (not g0)
// calls only nosplit functions between entersyscallblock/exitsyscall
func notetsleepg(n *note, ns int64) bool {
    gp := getg()
    if gp == gp.m.g0 {
        throw("notetsleepg on g0")
    }

    entersyscallblock()
    ok := notetsleep_internal(n, ns)
    exitsyscall()
    return ok
}

func pauseSchedulerUntilCallback() bool {
    return false
}

func checkTimeouts() {}

sync.RWMutex

atomic

sync.Map