-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualize_tree.Rmd
203 lines (160 loc) · 4.93 KB
/
visualize_tree.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# Visualize Phylogenetic Tree with Metadata
```{r}
library(ggplot2)
library(ggtree)
library(readxl)
library(dplyr)
library(tidyr)
library(stringr)
```
```{r}
uncc_colors <- c(
## All in C colors
"#005035", ## Charlotte Green
"#A49665", ## Niner Gold
"#F1E6B2", ## Jasper
"#899064", ## Pine Green
"#802F2D", ## Clay Red
"#007377", ## Sky Blue
## Others
"#717C7D", ## 444C (Grey)
"#72246C", ## 255C (Purple)
"#006BA6", ## 307C (Blue)
"#DF4661", ## 198C
"#FFB81C", ## 1235C
"#696158" ## 405C
)
```
## 164 Taxa Tree
### Load Data
```{r}
tree <- ape::read.nexus("164_tree/tree0.tnt.nex")
metadata <- read_excel("../../../Experiments.xlsx", sheet = "Antigens")
results <- read_excel("../../../Experiments.xlsx", sheet = "Experiments")
```
## Append Metadata
```{r}
tip_meta <- tip_labels %>%
left_join(metadata, by = "antigen_id")
tree_df <- data.frame(node = 1:length(tree$tip.label),
tip_label = tree$tip.label) %>%
left_join(metadata, by = c("tip_label" = "antigen_id"))
tree$antigen_host_order <- tree_df$antigen_host_order
```
### Make VDW Results Matrix
```{r}
# genotype_file <- system.file("examples/Genotype.txt", package="ggtree")
# genotype <- read.table(genotype_file, sep="\t", stringsAsFactor=F)
# colnames(genotype) <- sub("\\.$", "", colnames(genotype))
#
# genotype
vdw_df <- results %>%
select(antibody_id, antigen_id, vdw_best) %>%
pivot_wider(names_from = antibody_id, values_from = vdw_best) %>%
tibble::column_to_rownames(var="antigen_id") %>%
select(order(colnames(.))) %>%
mutate(average = rowMeans(pick(where(is.numeric))))
vdw_df
```
### Visualize the Base Tree
```{r}
base_tree_plot <- ggtree(tree,
# layout="circular",
layout="fan", open.angle=30,
# ladderize = FALSE,
# branch.length = "none",
# continuous = 'colour',
size=1
) %<+%
metadata +
geom_tiplab(size=2, align=TRUE, linesize=.5) # +
# geom_text(aes(label=node), hjust=.3) +
# aes(color=antigen_collection_location_continent) +
# scale_color_gradient(colours=c("red", 'orange', 'green', 'cyan', 'blue')) +
# geom_tippoint(aes(color=antigen_host_order)) +
# coord_flip() +
# scale_x_reverse() #+
# theme(color = "Host Order"
# shape = "Representative Sequence")
# geom_tiplab(hjust = -.1)
# theme(legend.position = "none")
base_tree_plot
```
## Add Heatmap to Tree
```{r}
gheatmap(base_tree_plot,
vdw_df,
offset=9, width=1,
colnames=TRUE,
colnames_angle = 90,
hjust = 1,
font.size = 3,
legend_title="Best van der Waals Energy") +
scale_x_ggtree() +
scale_fill_viridis_c(option = "plasma")
```
## 18K Tree
### Load Data
```{r}
tree_18k <- ape::read.nexus("18k_tree/tree0.tnt.nex")
metadata_18k <- read_excel("../../../Experiments.xlsx", sheet = "Full Antigen Metadata") %>%
mutate(Accession = antigen_id) %>%
replace_na(list(#antigen_host_class = "Not Specified",
antigen_host_order = "Not Specified",
antigen_collection_location_continent = "Not Specified"))
## Filter to taxa actually in the tree
metadata_18k_filtered <- metadata_18k %>%
filter(antigen_id %in% tree_18k$tip.label) %>%
mutate(label = antigen_id)
## Add metadata to tree
tree_18k_withmetadata <- full_join(tree_18k, metadata_18k_filtered, by = 'label')
# write.csv(metadata_18k_filtered, "metadata_18k_filtered.csv")
# write.beast(tree_18k_withmetadata, "18k_tree/tree0_w_meta_beast.nhx")
```
```{r}
class_tree <- ggtree(tree_18k_withmetadata,
aes(color=antigen_host_class),
# aes(color=antigen_collection_year),
# layout = 'circular',
# layout="fan", open.angle=180,
layout = "rectangular",
# ladderize = FALSE,
# continuous = 'colour',
size=0.2) +
# coord_flip() +
# scale_y_reverse() +
geom_tippoint(size = 1.5, aes(colour=antigen_host_class)) +
geom_tiplab(size = 1.2, color='black', hjust = 0.7) +
# geom_nodelab(size=3, color="red")+
# geom_hilight(mapping=aes(subset = node %in% tree_18k_withmetadata@data$node,
# fill=antigen_host_class),
# alpha = .8) +
labs(color = "Host Class") +
# scale_color_manual(values = uncc_colors) +
scale_color_manual(values = c(
"#005035", ## Aves
"#007377", ## Environment
"#F1E6B2", ## Insecta
"#802F2D" ## Mammalia
)) +
# scale_color_brewer(palette = "Set1") +
theme(
legend.position = "bottom",
legend.direction = "horizontal"
)
```
```{r}
# node_id = 21495 ## Most distant clade
# node_id = 21480
node_id = 21481
nn <- tidytree::offspring(tree_18k_withmetadata, node_id, self_include=TRUE)
class_tree_zoom <- class_tree +
ggforce::facet_zoom(xy = node %in% nn, zoom.size = 0.75)
class_tree_zoom
```
```{r}
plotly::ggplotly(class_tree)
```
```{r}
ggsave()
```