-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetric-tree.h
464 lines (357 loc) · 19.2 KB
/
metric-tree.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
// metric-tree.h 2021.06.18
// This is MetricTree, a tiny C++ library for hierarchical organization
// of a cloud of points in a metric space.
// Copyright 2020, 2021 Cristian Barbarosie [email protected]
// https://github.com/cristian-barbarosie/MetricTree
// MetricTree is free software: you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License as published
// by the Free Software Foundation, either version 3 of the License
// or (at your option) any later version.
// MetricTree is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
// You should have received a copy of the GNU Lesser General Public License
// along with MetricTree. If not, see <https://www.gnu.org/licenses/>.
// a cloud, i.e. a set of points in a metric space, organized as a tree
// similar to m-tree, just not balanced
// triangular inequality is assumed
// no geometric or topologic dimension assumed
// so it's a sort of generalization of quad-trees and oct-trees
// each node of the tree corresponds to a point, leaves have no special status
// the tree is not balanced (just like a quad-tree isn't)
// each node has a 'rank' associated to it (an integer, possibly zero, possibly negative)
// the rank has no special meaning except that
// the children of a node N have rank one unit less
// the children of a node N are no farther than dist[rank[N]] from N
// rank zero nodes have no special status
// leaves may have any rank (positive, zero or negative)
// as a consequence, indirect descendants of a node N will be no farther than 'range[r]' from N
// where range[r] = dist[r] + dist[r-1] + dist[r-2] + ... (an infinite sum) where r = rank[N]
// if N is a node and P is another point in the cloud with dist(N,P) < dist[rank[N]]
// this does not imply that P is a subaltern of N (just that it could be)
// if N is a node and P is another point in the cloud with dist(N,P) < range[rank[N]]
// this does not imply that P is an indirect subaltern of N (just that it could be)
// in other words: domains overlap
// 'dist' should be a geometric sequence, that is, dist[r+1] = ratio * dist[r]
// of course all 'dist' are positive
// 'ratio' must be greater than 2 (we recommend a value between 5 and 10)
// so range[r] = dist[r] / ( 1 - 1/ratio ) (the infinite sum above)
// we prefer to work with squared distance (thus avoiding computing square roots)
// see paragraph 12.10 in the manual of maniFEM
// http://manifem.rd.ciencias.ulisboa.pt/manual-manifem.pdf
#include <iostream>
#include <fstream>
#include <list>
#include <set>
#include <vector>
#include "math.h"
#include "assert.h"
template < typename Point, typename SqDist >
class MetricTree
{ public:
class Node;
SqDist squared_distance;
// callable object returning the square of the distance between two points
const double ratio;
const double sq_ratio { ratio * ratio };
const double range_factor { 0.999 - 1./ratio };
// indirect range = dist[rank] / range_factor
// should be 1 - 1/ratio but we decrease it a little to compensate for numerical errors
const double sq_range_factor { range_factor * range_factor };
const double dist_rank_zero;
const double sq_dist_rank_zero;
Node * root { nullptr };
// two vectors holding distances, one for nodes of positive rank and one for negative rank
// to obtain ranges (distance to indirect descendants) just divide by 'range_factor'
std::vector < double > dist_pos_rank, dist_neg_rank;
std::vector < double > sq_dist_pos_rank, sq_dist_neg_rank;
inline MetricTree ( SqDist sd, double d0, double r );
Node * add ( const Point & );
void add ( Node * );
inline void remove ( Node * );
inline std::list < Point > find_close_neighbours_of ( const Point & P, double dd );
// return all points in the cloud whose distance to P is less than or equal to dd
inline double get_dist ( int r );
inline double get_sq_dist ( int r );
inline void register_rank ( int r );
inline void promote_children_of ( Node * nod );
inline size_t nb_of_nodes ()
{ if ( root ) return root->nb_of_nodes();
return 0; }
}; // end of class MetricTree
//-----------------------------------------------------------------------------------------------//
template < typename Point, typename SqDist >
inline MetricTree<Point,SqDist>::MetricTree ( SqDist sd, double d0, double r )
: squared_distance ( sd ), ratio { r }, dist_rank_zero { d0 }, sq_dist_rank_zero { d0 * d0 },
dist_pos_rank ( 1, dist_rank_zero ), dist_neg_rank ( 1, dist_rank_zero ),
sq_dist_pos_rank ( 1, sq_dist_rank_zero ), sq_dist_neg_rank ( 1, sq_dist_rank_zero )
{ }
//-----------------------------------------------------------------------------------------------//
template < typename Point, typename SqDist >
inline double MetricTree<Point,SqDist>::get_dist ( int r )
{ if ( r == 0 ) return this->dist_rank_zero;
if ( r > 0 )
{ size_t rr = r;
assert ( this->dist_pos_rank.size() > rr );
return this->dist_pos_rank[rr]; }
size_t rr = -r;
assert ( this->dist_neg_rank.size() > rr );
return this->dist_neg_rank[rr]; }
//-----------------------------------------------------------------------------------------------//
template < typename Point, typename SqDist >
inline double MetricTree<Point,SqDist>::get_sq_dist ( int r )
{ if ( r == 0 ) return this->sq_dist_rank_zero;
if ( r > 0 )
{ size_t rr = r;
assert ( this->sq_dist_pos_rank.size() > rr );
return this->sq_dist_pos_rank[rr]; }
size_t rr = -r;
assert ( this->sq_dist_neg_rank.size() > rr );
return this->sq_dist_neg_rank[rr]; }
//-----------------------------------------------------------------------------------------------//
template < typename Point, typename SqDist >
inline void MetricTree<Point,SqDist>::register_rank ( int r )
{ if ( r == 0 ) return;
if ( r > 0 )
{ size_t rr = r;
while ( this->sq_dist_pos_rank.size() <= rr )
{ this->dist_pos_rank.push_back ( this->dist_pos_rank.back() * this->ratio );
this->sq_dist_pos_rank.push_back ( this->sq_dist_pos_rank.back() * this->sq_ratio ); } }
else
{ size_t rr = -r;
while ( this->sq_dist_neg_rank.size() <= rr )
{ this->dist_neg_rank.push_back ( this->dist_neg_rank.back() / this->ratio );
this->sq_dist_neg_rank.push_back ( this->sq_dist_neg_rank.back() / this->sq_ratio ); } } }
//-----------------------------------------------------------------------------------------------//
template < typename Point, typename SqDist >
class MetricTree<Point,SqDist>::Node
{ public:
Point point; // point in the metric space
int rank;
Node * parent { nullptr };
typename std::list<Node*>::iterator loc_in_parents_list;
std::list < Node * > children;
inline Node ( Point P, int r )
: point ( P ), rank { r }, children { }
{ }
void remove_from ( MetricTree * cloud );
void get_close_neighbours_of
( const Point & P, double dd, std::list < Point > & ll, MetricTree<Point,SqDist> * cloud );
// return all points in the cloud whose distance to P is less than or equal to dd
// the cloud is used as source of information (ratio etc)
void promote ( MetricTree * cloud );
// increases rank by one
// the cloud is used as source of information (ratio etc) and is modified
void adopt ( Node * nod, MetricTree * cloud );
inline void raw_adopt ( Node * nod, MetricTree * cloud );
void adopt_children_of ( Node * nod, MetricTree * cloud );
// the cloud is used as source of information (ratio etc) and is modified
size_t nb_of_nodes ();
}; // end of class MetricTree::Node
//-----------------------------------------------------------------------------------------------//
namespace {
double cloud_power ( double x, int exp )
{ if ( exp == 0 ) return 1.;
if ( exp < 0 ) return 1. / cloud_power ( x, -exp );
if ( exp == 1 ) return x;
int e = exp / 2;
return cloud_power ( x, e ) * cloud_power ( x, exp - e ); }
} // end of anonymous namespace
//-----------------------------------------------------------------------------------------------//
template < typename Point, typename SqDist >
void MetricTree<Point,SqDist>::Node::promote ( MetricTree<Point,SqDist> * cloud )
// increase the rank by one
{ // promote children first
for ( typename std::list<Node*>::const_iterator it_a = this->children.begin();
it_a != this->children.end(); it_a++ )
{ typename MetricTree<Point,SqDist>::Node * ambitious = *it_a;
if ( ambitious->rank == this->rank ) continue; // already promoted
ambitious->promote ( cloud );
// transfer ownership of some brothers from 'this' to 'ambitious'
for ( typename std::list<Node*>::const_iterator it_b = this->children.begin();
it_b != this->children.end(); )
{ typename MetricTree<Point,SqDist>::Node * brother = *it_b;
if ( brother->rank < this->rank )
if ( cloud->squared_distance ( ambitious->point, brother->point ) <=
cloud->get_sq_dist ( ambitious->rank ) )
{ // transfer 'brother' from 'this' to 'ambitious'
assert ( it_b == brother->loc_in_parents_list );
it_b = this->children.erase ( it_b );
brother->parent = ambitious;
ambitious->children.push_front ( brother );
brother->loc_in_parents_list = ambitious->children.begin();
continue; }
it_b++; } }
this->rank++;
}
//-----------------------------------------------------------------------------------------------//
template < typename Point, typename SqDist >
typename MetricTree<Point,SqDist>::Node * MetricTree<Point,SqDist>::add ( const Point & P )
// returns the newly created node
{ MetricTree<Point,SqDist>::Node * N = new MetricTree<Point,SqDist>::Node ( P, 0 );
// rank is irrelevant, we give zero, will be set correctly soon
this->add(N); return N; }
//-----------------------------------------------------------------------------------------------//
template < typename Point, typename SqDist >
void MetricTree<Point,SqDist>::add ( MetricTree<Point,SqDist>::Node * nod )
{ if ( this->root == nullptr )
{ this->root = nod; return; }
this->root->adopt ( nod, this );
if ( nod->parent ) return; // has parent means has been adopted
// nod cannot be adopted by this->root unless we increase its rank
this->root->promote ( this );
this->register_rank ( this->root->rank );
this->add ( nod ); }
//-----------------------------------------------------------------------------------------------//
template < typename Point, typename SqDist >
void MetricTree<Point,SqDist>::Node::adopt
( MetricTree<Point,SqDist>::Node * nod, MetricTree<Point,SqDist> * cloud )
// 'this' tries to adopt 'nod' (first ask children of 'this' to adopt 'nod')
{ double sq_dist = cloud->get_sq_dist ( this->rank );
double sq_range = sq_dist / cloud->sq_range_factor;
double sq_d = cloud->squared_distance ( this->point, nod->point );
if ( sq_d > sq_range ) return; // 'nod' is out of the range of 'this'
for ( typename std::list<Node*>::const_iterator it = this->children.begin();
it != this->children.end(); it++ )
{ typename MetricTree<Point,SqDist>::Node * child = *it;
assert ( child );
child->adopt ( nod, cloud );
if ( nod->parent ) return; }
// has parent means has been adopted
if ( sq_d <= sq_dist ) // yes, 'this' will adopt 'nod'
this->raw_adopt ( nod, cloud ); }
// else ... sorry, nobody wants noddy :-(
//-----------------------------------------------------------------------------------------------//
template < typename Point, typename SqDist >
inline void MetricTree<Point,SqDist>::Node::raw_adopt
( typename MetricTree<Point,SqDist>::Node * nod, MetricTree<Point,SqDist> * cloud )
{ cloud->register_rank ( this->rank - 1 );
nod->rank = this->rank - 1;
this->children.push_front ( nod );
nod->parent = this;
nod->loc_in_parents_list = this->children.begin(); }
//-----------------------------------------------------------------------------------------------//
template < typename Point, typename SqDist >
inline void MetricTree<Point,SqDist>::promote_children_of
( typename MetricTree<Point,SqDist>::Node * nod )
// 'nod' is in the process of being removed from the cloud so its rank is irrelevant
// and not necessarily correctly related to the rank of its children
// (children may have been promoted in the process)
{ for ( typename std::list<typename MetricTree<Point,SqDist>::Node*>::
const_iterator it = nod->children.begin(); it != nod->children.end(); )
{ typename MetricTree<Point,SqDist>::Node * child = *it;
child->promote ( this );
// 'child' will attempt to adopt its own brothers now
typename std::list<typename MetricTree<Point,SqDist>::Node*>::
const_iterator itt = it;
for ( itt++; itt != nod->children.end(); )
{ typename MetricTree<Point,SqDist>::Node * little_brother = *itt;
double sq_dist = this->get_sq_dist ( child->rank );
double d = this->squared_distance ( child->point, little_brother->point );
if ( d <= sq_dist )
{ child->raw_adopt ( little_brother, this );
itt = nod->children.erase ( itt ); }
else itt++; }
it++; } }
//-----------------------------------------------------------------------------------------------//
template < typename Point, typename SqDist >
void MetricTree<Point,SqDist>::Node::adopt_children_of
( MetricTree<Point,SqDist>::Node * nod, MetricTree<Point,SqDist> * cloud )
// well, try to adopt some of them
// unlike in method 'adopt', do not ask children of 'this' to adopt
// 'nod' is in the process of being removed from the cloud so it rank is irrelevant
// and not necessarily correctly related to the rank of its children
// (children may have been promoted in the process)
{ for ( typename std::list<Node*>::const_iterator it = nod->children.begin();
it != nod->children.end(); )
{ MetricTree<Point,SqDist>::Node * child = *it;
assert ( child->loc_in_parents_list == it );
double sq_dist = cloud->get_sq_dist ( this->rank );
double d = cloud->squared_distance ( this->point, child->point );
if ( d <= sq_dist )
{ this->raw_adopt ( child, cloud );
it = nod->children.erase ( it ); }
else it++; } }
//-----------------------------------------------------------------------------------------------//
template < typename Point, typename SqDist >
inline void MetricTree<Point,SqDist>::remove
( MetricTree<Point,SqDist>::Node * nod )
{ nod->remove_from ( this ); }
//-----------------------------------------------------------------------------------------------//
template < typename Point, typename SqDist >
void MetricTree<Point,SqDist>::Node::remove_from
( MetricTree<Point,SqDist> * cloud )
{ MetricTree<Point,SqDist>::Node * p = this->parent;
if ( p )
{ typename std::list<Node*>::const_iterator it_p = this->loc_in_parents_list;
assert ( it_p != p->children.end() );
p->children.erase ( it_p );
if ( this->children.empty() ) { delete this; return; }
while ( true )
// p is available for adopting the children of 'this'
// rank[p] == rank[this] + 1 == rank[children] + 2
// but before that, other children of p may accept to adopt these children
{ for ( typename std::list<Node*>::const_reverse_iterator it = p->children.rbegin();
it != p->children.rend(); it++ )
// we use reverse iterator because raw_adopt inserts new children at the beginning
{ (*it)->adopt_children_of ( this, cloud );
if ( this->children.empty() ) { delete this; return; } }
cloud->promote_children_of ( this );
if ( p->parent == nullptr ) break;
p = p->parent; } }
else // p == nullptr
{ assert ( this == cloud->root );
typename std::list<Node*>::const_iterator it = this->children.begin();
if ( it == this->children.end() ) // cloud becomes empty
{ cloud->root = nullptr; delete this; return; }
MetricTree<Point,SqDist>::Node * child = *it;
child->parent = nullptr;
cloud->root = child;
assert ( child->loc_in_parents_list == it );
it = this->children.erase ( it );
if ( it == this->children.end() ) // we're good, 'child' will be the new root
{ delete this; return; }
child->promote ( cloud ); p = child; }
// p is available for adopting the children of 'this'
// rank[p] == rank[children] + 1
// basta promover p e os children um passo de cada vez
assert ( p == cloud->root );
if ( this->children.empty() ) { delete this; return; }
while ( true )
{ p->adopt_children_of ( this, cloud );
if ( this->children.empty() ) { delete this; return; }
p->promote ( cloud ); // register new rank !
cloud->register_rank ( p->rank );
cloud->promote_children_of ( this ); } }
//-----------------------------------------------------------------------------------------------//
template < typename Point, typename SqDist >
inline std::list < Point > MetricTree<Point,SqDist>::find_close_neighbours_of
( const Point & P, double dd )
// return all points in the cloud whose distance to P is less than or equal to dd
{ std::list < Point > ll;
this->root->get_close_neighbours_of ( P, dd, ll, this );
return ll; }
//-----------------------------------------------------------------------------------------------//
template < typename Point, typename SqDist >
void MetricTree<Point,SqDist>::Node::get_close_neighbours_of
( const Point & P, double dd, std::list < Point > & ll, MetricTree<Point,SqDist> * cloud )
// return all points in the cloud whose distance to P is less than or equal to dd
{ double dist = cloud->get_dist ( this->rank );
double range = dist / cloud->range_factor;
double sq_d = cloud->squared_distance ( P, this->point );
double sum = range + dd;
if ( sq_d > sum * sum ) return; // P is too far from 'this'
if ( sq_d <= dd * dd ) ll.push_back ( this->point );
for ( typename std::list<Node*>::const_iterator it = this->children.begin();
it != this->children.end(); it++ )
(*it)->get_close_neighbours_of ( P, dd, ll, cloud ); }
//-----------------------------------------------------------------------------------------------//
template < typename Point, typename SqDist >
size_t MetricTree<Point,SqDist>::Node::nb_of_nodes ( )
{ size_t res = 1;
for ( typename std::list<Node*>::const_iterator it = this->children.begin();
it != this->children.end(); it++ )
res += (*it)->nb_of_nodes();
return res; }
//-----------------------------------------------------------------------------------------------//