Skip to content

Latest commit

 

History

History
107 lines (84 loc) · 3.96 KB

README.md

File metadata and controls

107 lines (84 loc) · 3.96 KB

📃 Model & Classification extractor (SemaClassifier)

When a new sample has to be evaluated, its SCDG is first build as described in the README of the SCDG. Then, gspan is applied to extract the biggest common subgraph and a similarity score is evaluated to decide if the graph is considered as part of the family or not.

The similarity score S between graph G' and G'' is computed as follow:

Since G'' is a subgraph of G', this is calculating how much G' appears in G''.

Another classifier we use is the Support Vector Machine (SVM) with INRIA graph kernel or the Weisfeiler-Lehman extension graph kernel.

How to use ?

Launch the container:

docker run --rm --name="sema-classifier" -v ${PWD}/InputFolder:/sema-classifier/application/database -it sema-classifier ../docker_startup.sh 1

Where the volume correspond to the folder containings the inputs that will be accessible by the container.

Then just run the script :

python3 SemaClassifier.py FOLDER/FILE

usage: update_readme_usage.py [-h] [--threshold THRESHOLD] [--biggest_subgraph BIGGEST_SUBGRAPH] [--support SUPPORT] [--ctimeout CTIMEOUT] [--epoch EPOCH] [--sepoch SEPOCH]
                              [--data_scale DATA_SCALE] [--vector_size VECTOR_SIZE] [--batch_size BATCH_SIZE] (--classification | --detection) (--wl | --inria | --dl | --gspan)
                              [--bancteian] [--delf] [--FeakerStealer] [--gandcrab] [--ircbot] [--lamer] [--nitol] [--RedLineStealer] [--sfone] [--sillyp2p] [--simbot]
                              [--Sodinokibi] [--sytro] [--upatre] [--wabot] [--RemcosRAT] [--verbose_classifier] [--train] [--nthread NTHREAD]
                              binaries

Classification module arguments

optional arguments:
  -h, --help            show this help message and exit
  --classification      By malware family
  --detection           Cleanware vs Malware
  --wl                  TODO
  --inria               TODO
  --dl                  TODO
  --gspan               TODOe

Global classifiers parameters:
  --threshold THRESHOLD
                        Threshold used for the classifier [0..1] (default : 0.45)

Gspan options:
  --biggest_subgraph BIGGEST_SUBGRAPH
                        Biggest subgraph consider for Gspan (default: 5)
  --support SUPPORT     Support used for the gpsan classifier [0..1] (default : 0.75)
  --ctimeout CTIMEOUT   Timeout for gspan classifier (default : 3sec)

Deep Learning options:
  --epoch EPOCH         Only for deep learning model: number of epoch (default: 5) Always 1 for FL model
  --sepoch SEPOCH       Only for deep learning model: starting epoch (default: 1)
  --data_scale DATA_SCALE
                        Only for deep learning model: data scale value (default: 0.9)
  --vector_size VECTOR_SIZE
                        Only for deep learning model: Size of the vector used (default: 4)
  --batch_size BATCH_SIZE
                        Only for deep learning model: Batch size for the model (default: 1)

Malware familly:
  --bancteian
  --delf
  --FeakerStealer
  --gandcrab
  --ircbot
  --lamer
  --nitol
  --RedLineStealer
  --sfone
  --sillyp2p
  --simbot
  --Sodinokibi
  --sytro
  --upatre
  --wabot
  --RemcosRAT

Global parameter:
  --verbose_classifier  Verbose output during train/classification (default : False)
  --train               Launch training process, else classify/detect new sample with previously computed model
  --nthread NTHREAD     Number of thread used (default: max)
  binaries              Name of the folder containing binary'signatures to analyze (Default: output/save-SCDG/, only that for ToolChain)

Example

This will train models for input dataset

python3 SemaClassifier.py --train test-set/autoit

This will classify input dataset based on previously computed models

python3 SemaClassifier.py test-set/autoit

Tests

To run the classifier tests, run inside the docker container:

python3 classifier_tests.py configs/config_test.ini