diff --git a/paper/paper.bib b/paper/paper.bib index d938f33..00356e8 100644 --- a/paper/paper.bib +++ b/paper/paper.bib @@ -145,6 +145,7 @@ @misc{kiritchenko2018examininggenderracebias archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/1805.04508}, + doi={10.18653/v1/S18-2005} } @@ -155,7 +156,8 @@ @inproceedings{Gehman2020RealToxicityPromptsEN author={Samuel Gehman and Suchin Gururangan and Maarten Sap and Yejin Choi and Noah A. Smith}, booktitle={Findings}, year={2020}, - url={https://api.semanticscholar.org/CorpusID:221878771} + url={https://api.semanticscholar.org/CorpusID:221878771}, + doi={10.18653/v1/2020.findings-emnlp.301} } @@ -406,7 +408,9 @@ @article{DBLP:journals/corr/abs-1907-04135 eprint = {1907.04135}, timestamp = {Wed, 17 Jul 2019 10:27:36 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-1907-04135.bib}, - bibsource = {dblp computer science bibliography, https://dblp.org} + bibsource = {dblp computer science bibliography, https://dblp.org}, + doi = { +https://doi.org/10.1109/TVCG.2019.2934619} } @@ -515,6 +519,7 @@ @misc{huang2020reducingsentimentbiaslanguage archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/1911.03064}, + doi={10.18653/v1/2020.findings-emnlp.7} } @@ -541,6 +546,7 @@ @misc{feldman2015certifyingremovingdisparateimpact archivePrefix={arXiv}, primaryClass={stat.ML}, url={https://arxiv.org/abs/1412.3756}, + doi={https://doi.org/10.1145/2783258.2783311} } @@ -552,6 +558,7 @@ @misc{goldfarbtarrant2021intrinsicbiasmetricscorrelate archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2012.15859}, + doi={10.18653/v1/2021.acl-long.150} } diff --git a/paper/paper.md b/paper/paper.md index bc87732..08890d8 100644 --- a/paper/paper.md +++ b/paper/paper.md @@ -46,7 +46,7 @@ Furthermore, LangFair is designed for real-world LLM-based systems that require # Generation of Evaluation Datasets -The `langfair.generator` module offers two classes, `ResponseGenerator` and `CounterfactualGenerator`, which aim to enable user-friendly construction of evaluation datasets for text generation use cases. +The `langfair.generator` module offers two classes, `ResponseGenerator` and `Counterfactual`-`Generator`, which aim to enable user-friendly construction of evaluation datasets for text generation use cases. ### `ResponseGenerator` class